Tooprogram.ru

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Файловая структура жесткого диска

Логическая структура жесткого диска

Обычно пользователи имеют в своем компьютере один встроенный накопитель. При первой установке операционной системы производится разбивка его на определенное количество разделов. Каждый логический том отвечает за хранение определенной информации. Кроме этого он может быть форматирован в разные файловые системы и в одну из двух структур. Далее мы бы хотели максимально детально описать программную структуру жесткого диска.

Что касается физических параметров — HDD состоит из нескольких частей, объединенных в одну систему. Если вы хотите получить развернутую информацию по этой теме, рекомендуем обратиться к отдельному нашему материалу по следующей ссылке, а мы же переходим к разбору программной составляющей.

Стандартные буквенные обозначения

Во время разбивки жесткого диска на разделы по умолчанию для системного тома устанавливается буква C, а для второго — D. Буквы A и B пропускаются, поскольку так обозначаются дискеты разных форматов. При отсутствии второго тома жесткого диска буквой D будет обозначаться DVD-привод.

Пользователь сам разбивает HDD на разделы, присваивая им любые доступные буквы. О том, как создать такую разбивку вручную, читайте в другой нашей статье по следующей ссылке.

Структуры MBR и GPT

С томами и разделами все предельно просто, однако присутствуют еще и структуры. Более старым логическим образцом называется MBR (Master Boot Record), а ему на замену пришел усовершенствованный GPT (GUID Partition Table). Давайте остановимся на каждой структуре и рассмотрим их детально.

MBR

Диски со структурой MBR постепенно вытесняются GPT, но все еще популярны и используются на многих компьютерах. Дело в том, что Master Boot Record — это первый сектор HDD объемом 512 байт, он зарезервирован и никогда не перезаписывается. Отвечает этот участок за запуск ОС. Удобна такая структура тем, что позволяет без проблем разделять физический накопитель на части. Принцип запуска диска с MBR происходит так:

  1. При запуске системы BIOS обращается к первому сектору и отдает ему дальнейшее управление. Этот сектор имеет код 0000:7C00h .
  2. Следующие четыре байта отвечают за определение диска.
  3. Далее происходит смещение до 01BEh — таблицы томов HDD. На скриншоте ниже вы можете видеть графическое объяснение считывания первого сектора.

Теперь, когда произошло обращение к разделам диска, нужно определить активный участок, с которого и будет загружаться ОС. Первый байт в этом образце считывания определяет нужный раздел для старта. Следующие выбирают номер головки для начала загрузки, номер цилиндра и сектора, а также количество секторов в томе. Порядок считывания показан на следующей картинке.

За координаты расположения крайней записи раздела рассматриваемой технологии отвечает технология CHS (Cylinder Head Sector). Она считывает номер цилиндра, головки и секторы. Нумерация упомянутых частей начинается с , а секторы с 1. Именно путем считывания всех этих координат и определяется логический раздел жесткого диска.

Недостаток такой системы заключается в ограниченности адресации объема данных. То есть во время первой версии CHS раздел мог иметь максимум 8 ГБ памяти, чего в скором времени, конечно же, перестало хватать. На замену пришла адресация LBA (Logical Block Addressing), в которой была переработана система нумерации. Теперь поддерживаются диски объемом до 2 ТБ. LBA была еще доработана, но изменения коснулись только GPT.

С первым и последующими секторами мы успешно разобрались. Что касается последнего, то он также зарезервирован, называется AA55 и отвечает за проверку MBR на целостность и наличие необходимой информации.

GPT

Технология MBR обладала рядом недостатков и ограничений, которые не могли обеспечить работу с большим количеством данных. Исправлять ее или изменять было бессмысленно, поэтому вместе с выходом UEFI пользователи узнали о новой структуре GPT. Она была создана с учетом постоянного увеличения объема накопителей и изменений в работе ПК, поэтому на текущее время это самое передовое решение. Отличается от MBR она такими параметрами:

  • Отсутствие координат CHS, поддерживается работа только с доработанной версией LBA;
  • GPT хранит на накопителе две свои копии — одна в начале диска, а другая в конце. Такое решение позволит реанимировать сектор через хранящуюся копию в случае повреждения;
  • Переработано устройство структуры, о чем мы поговорим далее;
  • Проверка корректности заголовка происходит с помощью UEFI c использованием контрольной суммы.

Теперь хотелось бы детальнее рассказать о принципе работы этой структуры. Как уже было сказано выше, используется здесь технология LBA, что позволит без проблем работать с дисками любых объемов, а в будущем расширить диапазон действия, если потребуется.

Стоит отметить, что сектор MBR в GPT тоже присутствует, он является первым и имеет размер в один бит. Необходим он для корректной работы HDD со старыми комплектующими, а также не позволяет программам, которым неизвестен GPT, разрушить структуру. Поэтому этот сектор называется защитным. Далее располагается сектор размером в 32, 48 или 64 бита, отвечающий за разметку на разделы, называется он первичным GPT-заголовком. После этих двух секторов идет считывание содержимого, вторая схема томов, а замыкает все это копия GPT. Полная структура представлена на скриншоте ниже.

На этом общая информация, которая может быть интересной обычному пользователю, заканчивается. Дальше — это тонкости работы каждого сектора, и эти данные уже никак не касаются рядового юзера. Что касается выбора GPT или MBR — вы можете ознакомиться с другой нашей статьей, где обсуждается выбор структуры под Windows 7.

Еще хочется добавить, что GPT — более совершенный вариант, и в будущем в любом случае придется переходить на работу с носителями такой структуры.

Файловые системы и форматирование

Говоря о логической структуре HDD, нельзя не упомянуть о доступных файловых системах. Конечно, их существует много, но остановиться мы бы хотели на разновидностях для двух ОС, с которым чаще всего работают обычные пользователи. Если компьютер не может определить файловую систему, то жесткий диск приобретает формат RAW и именно в нем отображается в ОС. Доступно ручное исправление этой проблемы. Мы предлагаем ознакомиться с деталями выполнения этой задачи далее.

Windows

  1. FAT32. Компания Microsoft начала выпуск файловых систем с FAT, в будущем эта технология претерпела множество изменений, и последней версией на данный момент является FAT32. Ее особенность заключается в том, что она не предназначена для обработки и хранения больших файлов, а также на нее будет довольно проблематично установить тяжелые программы. Однако FAT32 универсальна, и при создании внешнего жесткого диска она используется для того, чтобы сохраненные файлы можно было считать с любого телевизора или проигрывателя.
  2. NTFS. Майкрософт представила NTFS, чтобы полностью заменить FAT32. Сейчас эта файловая система поддерживается всеми версиями Windows, начиная от XP, также отлично работает на Linux, однако на Mac OS можно только считать информацию, записать ничего не получится. Выделяется NTFS тем, что не имеет ограничений на размер записываемых файлов, обладает расширенной поддержкой разных форматов, возможностью сжатия логических разделов и легко восстанавливается при различных повреждениях. Все остальные файловые системы в большем роде подходят для небольших съемных носителей и достаточно редко применяются в жестких дисках, поэтому мы не будем их рассматривать в рамках этой статьи.

Linux

С файловыми системами Windows мы разобрались. Хотелось бы обратить внимание еще на поддерживаемые типы в ОС Linux, поскольку она также является популярной среди пользователей. Линукс поддерживает работу со всеми файловыми системами Виндовс, однако саму операционку рекомендуется устанавливать на специально разработанную для этого ФС. Отметить стоит такие разновидности:

  1. Extfs стала самой первой файловой системой для Linux. Она имеет свои ограничения, например, максимальный размер файла не может превышать 2 ГБ, а его имя должно находиться в диапазоне от 1 до 255 символов.
  2. Ext3 и Ext4. Мы пропустили предыдущие две версии Ext, поскольку сейчас они совсем неактуальны. Расскажем лишь о более-менее современных версиях. Особенность этой ФС заключается в поддержке объектов размером до одного терабайта, хотя в при работе на старом ядре Ext3 не поддерживала элементы размером более 2 ГБ. Еще одной особенностью можно назвать поддержку считывания программного обеспечения, написанного под Windows. Следом вышла новая ФС Ext4, которая позволила хранить файлы объемом до 16 ТБ.
  3. Главным конкурентом Ext4 считается XFS. Ее преимущество заключается в особом алгоритме записи, он называется «Отложенное выделение места». Когда данные отправляются на запись, они сначала помещаются в оперативную память и ждут очереди на сохранение в дисковом пространстве. Перемещение на HDD осуществляется только тогда, когда ОЗУ заканчивается или занимается другими процессами. Такая последовательность позволяет сгруппировать мелкие задачи в крупные и уменьшить фрагментацию носителя.
Читать еще:  Как добавить жесткий диск в ноутбук

Что касается выбора файловой системы под установку ОС, обычному пользователю лучше выбрать рекомендуемый вариант при инсталляции. Обычно это Etx4 или XFS. Продвинутые юзеры уже задействуют ФС под свои нужды, применяя ее различные типы для выполнения поставленных задач.

Изменяется файловая система после форматирования накопителя, поэтому это достаточно важный процесс, позволяющий не только удалить файлы, но и исправить возникшие неполадки с совместимостью или чтением. Мы предлагаем вам прочесть специальный материал, в котором максимально детально расписана правильная процедура форматирования HDD.

Кроме этого файловая система объединяет группы секторов в кластеры. Каждый тип делает это по-разному и умеет работать только с определенным количеством единиц информации. Кластеры отличаются по размеру, маленькие подходят для работы с легкими файлами, а большие имеют преимущество — менее подвержены фрагментации.

Фрагментация появляется из-за постоянной перезаписи данных. Со временем разбитые на блоки файлы сохраняются в совершенно разные части диска и требуется производить ручную дефрагментацию, чтобы выполнить перераспределение их местоположения и повысить скорость работы HDD.

Информации по поводу логической структуры рассматриваемого оборудования присутствует еще немалое количество, взять те же форматы файлов и процесс их записи в секторы. Однако сегодня мы постарались максимально просто рассказать о самых важных вещах, которые будет полезно знать любому пользователю ПК, желающему изучить мир комплектующих.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Структура жёсткого диска

Сектора

Любой жёсткий диск можно представить как огромный «чистый лист», на который можно записывать данные и откуда потом их можно считать. Чтобы ориентироваться на диске, всё его пространство разбивают на небольшие «клеточки» — сектора. Сектор — это минимальная единица хранения данных на диске, обычно его размер составляет 512 байт. Все сектора на диске нумеруются: каждый из n секторов получает номер от 0 до n–1. Благодаря этому любая информация, записанная на диск, получает точный адрес — номера соответствующих секторов. Так что диск ещё можно представить как очень длинную строчку (ленточку) из секторов. Можете посчитать, сколько секторов на вашем диске размером в N гигабайт.

Разделы

Представлять жёсткий диск как единый «лист» не всегда бывает удобно: иногда полезно «разрезать» его на несколько независимых листов, на каждом из которых можно писать и стирать что угодно, не опасаясь повредить написанное на других листах. Логичнее всего записывать раздельно данные большей и меньшей важности или просто относящиеся к разным вещам.

Конечно, над жёстким диском следует производить не физическое, а логическое разрезание, для этого вводится понятие раздел (partition). Вся последовательность (очень длинная ленточка) секторов разрезается на несколько частей, каждая часть становится отдельным разделом. Фактически, нам не придётся ничего разрезать (да и вряд ли бы это удалось), достаточно объявить, после каких секторов на диске находятся границы разделов.

Таблица разделов

Технически разбиение диска на разделы организовано следующим образом: заранее определённая часть диска отводится под таблицу разделов, в которой и написано, как разбит диск. Стандартная таблица разделов для диска IBM-совместимого компьютера — HDPT (Hard Disk Partition Table) — располагается в конце самого первого сектора диска, после предзагрузчика (Master Boot Record, MBR) и состоит из четырёх записей вида « тип начало конец », по одной на каждый раздел. Начало и конец — это номера тех секторов диска, где начинается и заканчивается раздел. С помощью такой таблицы диск можно поделить на четыре или меньше разделов: если раздела нет, тип устанавливается в 0 .

Однако четырёх разделов редко когда бывает достаточно. Куда же помещать дополнительные поля таблицы разбиения? Создатели IBM PC предложили универсальный способ: один из четырёх основных разделов объявляется расширенным (extended partition); он, как правило, является последним и занимает всё оставшееся пространство диска.

Расширенный раздел можно разбить на подразделы тем же способом, что и весь диск: в самом начале — на этот раз не диска, а самого раздела — заводится таблица разделов, с записями для четырёх разделов, которые снова можно использовать, причём один из подразделов может быть, опять-таки, расширенным, со своими подразделами и т. д.

Разделы, упомянутые в таблице разделов диска, принято называть основными (primary partition), а все подразделы расширенных разделов — дополнительными (secondary partition). Так что основных разделов может быть не более четырёх, а дополнительных — сколько угодно.

Чтобы не усложнять эту схему, при разметке диска соблюдают два правила: во-первых, расширенных разделов в таблице разбиения диска может быть не более одного, а во-вторых, таблица разбиения расширенного раздела может содержать либо одну запись — описание дополнительного раздела, либо две — описание дополнительного раздела и описание вложенного расширенного раздела.

Тип раздела

В таблице разделов для каждого раздела указывается тип, который определяет файловую систему, которая будет содержаться в этом разделе. Каждая операционная система распознаёт определённые типы и не распознаёт другие, и, соответственно, откажется работать с разделом неизвестного типа.

Подробнее о файловых системах см. раздел Типы файловых систем.

Логические тома (LVM)

Работая с разделами, нужно учитывать, что производимые над ними действия связаны непосредственно с разметкой жёсткого диска. С одной стороны, разбиение на разделы — это наиболее традиционный для PC способ логической организации дискового пространства. Однако если в процессе работы появится потребность изменить логику разбиения диска или размеры областей (т. е. когда возникает задача масштабирования), работа с разделами не очень эффективна.

Например, при необходимости создать новый раздел или увеличить размер существующего, можно столкнуться с рядом трудностей, связанных с ограничением количества дополнительных разделов или перераспределением данных. Избежать их очень просто: нужно лишь отказаться от «привязки» данных к определённой области жёсткого диска. В Linux эта возможность реализуется при помощи менеджера логических томов (LVM — Logical Volume Manager). LVM организует дополнительный уровень абстракции между разделами с одной стороны и хранящимися на них данными с другой, выстраивая собственную иерархическую структуру.

Дисковые разделы (в терминологии LVM — физические тома) объединяются в группу томов, внутри которой создаются логические тома. Таким образом, группа томов выстраивает соответствие между физическим и логическим пространством диска.

Технологически это организуется следующим образом. Физические тома разбиваются на отдельные блоки — физические экстенты, которые объединяются в группу томов. Логические тома разбиваются на блоки такого же размера — логические экстенты. В разных группах томов размер экстента может быть различным.

Отношения между логическими и физическими томами представлены в виде отображения логических экстентов в физические. Возможны два способа отображения — линейное и расслоённое (striped). В первом случае логические экстенты располагаются последовательно соответственно физическим, во втором поочерёдно распределяются между несколькими физическими томами.

В свою очередь, между логическим томом и группой томов возникают отношения, аналогичные таковым между разделом и жёстким диском, с отличием в уровне абстракции и, соответственно, колоссальной разнице в гибкости манипуляции. Поскольку раздел — конкретная область физического диска между двумя определёнными секторами, а том — логическая категория, принимаемая для удобства использования дискового пространства, производить манипуляции со вторым значительно проще. Можно свободно перераспределять логические тома внутри группы, изменять их размер, увеличивать размер группы томов за счёт внесения в неё нового раздела (только при линейном отображении) и многое другое.

Дисковые массивы (RAID)

Иногда обычной производительности жёсткого диска может не хватать. В случаях, когда во главу угла ставится скорость работы с данными (скорость записи и чтения) или надёжность их хранения, используется технология RAID (Redundant array of independent disks — избыточный массив независимых дисков). Технология RAID позволяет объединять несколько физических дисковых устройств (жёстких дисков или разделов на них) в дисковый массив. Диски, входящие в массив, управляются централизованно и представлены в системе как одно логическое устройство, подходящее для организации на нём единой файловой системы.

Существует два способа реализации RAID: аппаратный и программный. Аппаратный дисковый массив состоит из нескольких жёстких дисков, управляемых при помощи специальной платы контроллера RAID-массива. Программный RAID в Linux-системах (Linux Software RAID) реализуется при помощи специального драйвера (Multiple Device driver — драйвер MD-устройства). В программный массив организуются дисковые разделы, которые могут занимать как весь диск, так и его часть, а управление осуществляется посредством специальных утилит ( mdadm ).

Читать еще:  Основные элементы жесткого диска

Программные RAID-массивы, как правило, менее надежды, чем аппаратные, но обеспечивают более высокую скорость работы с данными (производительность процессора и системной шины обычно намного выше, чем у любого дискового контроллера). Также их преимущество по сравнению с аппаратными массивами: независимость от форматов данных на диске и как следствие — большая совместимость с различными типами и размерами дисков и их разделов. Использование программного RAID также позволяет сэкономить на покупке дополнительного оборудования. Однако обратной стороной медали станет увеличение нагрузки на процессор и системную шину, это следует иметь в виду, принимая решение об использовании программного RAID.

Уровни RAID

Существует несколько разновидностей RAID-массивов, так называемых уровней. В Linux поддерживаются следующие уровни программных RAID-массивов.

RAID0

Для создания массива этого уровня понадобится как минимум два диска одинакового размера. Запись осуществляется по принципу чередования: данные делятся на чанки (chunk) — порции данных одинакового размера, и поочерёдно распределяются по всем дискам, входящим в массив. Поскольку запись ведётся на все диски, при отказе одного из них будут утрачены все хранившиеся на массиве данные. Это цена выбора в пользу увеличения скорости работы с данными: запись и чтение на разных дисках происходит параллельно и, соответственно, быстрее.

RAID1

Массивы этого уровня построены по принципу зеркалирования, при котором все данные, записанные на одном диске, дублируются на другом. Для создания такого массива потребуется два или более дисков одинакового размера. Избыточность обеспечивает отказоустойчивость массива: в случае выхода из строя одного из дисков, данные на другом остаются неповреждёнными. Расплата за надёжность — фактическое сокращение дискового пространства вдвое. Скорость чтения и записи остаются на уровне обычного жёсткого диска.

RAID4

В массивах RAID4 реализован принцип чётности, объединяющий технологии чередования и зеркалирования. Один из трёх (или из большего числа) дисков задействуется для хранения информации о чётности в виде суперблоков с контрольными суммами блоков данных, последовательно распределённых на остальных дисках (как в RAID0). Достоинства этого уровня — отказоустойчивость уровня RAID1 при меньшей избыточности (из скольких бы дисков не состоял массив, под контрольную информацию задействуется лишь один из них). При отказе одного из дисков утраченные данные можно будет восстановить из контрольных суперблоков, причём, если в составе массива есть резервный диск, реконструкция данных начнётся автоматически. Очевидным недостатком, однако, является снижение скорости записи, поскольку информацию о чётности приходится высчитывать при каждой новой записи на диск.

RAID5

Этот уровень аналогичен RAID4, за тем исключением, что суперблоки с информацией о чётности располагаются не на отдельном диске, а равномерно распределяются по всем дискам массива вместе с блоками данных. Как результат — повышение скорости работы с данными и высокая отказоустойчивость.

Массивы всех уровней помимо блоков данных и суперблоков с контрольными суммами могут также содержать специальный суперблок (persistent superblock), который располагается в начале всех дисков массива и содержит информацию о конфигурации MD-устройства. Наличие отдельного суперблока позволяет ядру операционной системы получать информацию о конфигурации устройства RAID прямо с дисков, а не из конфигурационного файла, что может быть полезным, если файл по каким-то причинам перестанет быть доступным. Кроме того, наличие отдельного суперблока — необходимое условие автоопределения RAID-устройств при загрузке системы.

Более подробная информация о RAID

Более подробную информацию можно найти в документации и статьях, посвящённых RAID:

Урок «Логическая структура диска» (конспект+презентация+пр.р.)

Как организовать дистанционное обучение во время карантина?

Помогает проект «Инфоурок»

Выбранный для просмотра документ презентация.docx

Тема урока : логическая структура дисков 10 класс

Образовательная – помочь учащимся получить представление о файлах и файловых системах, познакомиться с понятием структура диска, дать основные понятия, необходимые для грамотной работы на компьютере.

Развивающая – развитие познавательных интересов, навыков работы на компьютере, самоконтроля, умения конспектировать.

Воспитательная – воспитание информационной культуры учащихся, внимательности, аккуратности, дисциплинированности, усидчивости.

Проверка домашнего задания

Объяснение нового материала

Выполнение практической работы №9

доска, компьютер, компьютерная презентация.

Проверка домашнего здания

Объяснение нового материала

II. Проверка домашнего задания:

1. Что такое файл?

2. Что такое файловая система?

3. Какая файловая система применяется в компьютерах?

4. Приведите примеры файловых менеджеров.

III. Объяснение нового материала:

На этом уроке мы познакомимся с тем как хранятся файлы на дисках.

Физическая и логическая структура дисков.

Для того чтобы на диске можно было хранить информацию, диск должен быть отформатирован, то есть должна быть создана физическая и логическая структура диска.

Формирование физической структуры диска состоит в создании на диске концентрических дорожек, которые, в свою очередь, делятся на секторы. Для этого в процессе форматирования магнитная головка дисковода расставляет в определенных местах диска метки дорожек и секторов.

Логическая структура гибких дисков.

Логическая структура магнитного диска представляет собой совокупность секторов, каждый из которых имеет свой порядковый номер. Сектора нумеруются в линейной последовательности от первого сектора нулевой дорожки до последнего сектора последней дорожки. При записи файла на диск будет занято всегда целое количество секторов, соответственно минимальный размер файла — это размер одного сектора, а максимальный соответствует общему количеству секторов на диске. Полная информация о секторах, которые занимают файлы, содержится в таблице размещения файлов (FAT — File Allocation Table). Количество ячеек FAT соответствует количеству секторов на диске, а значениями ячеек являются цепочки размещения файлов, то есть последовательности адресов секторов, в которых хранятся файлы.

Существуют два различных вида форматирования дисков: полное и быстрое форматирование. Полное форматирование включает в себя как физическое форматирование (проверку качества магнитного покрытия дискеты и ее разметку на дорожки и секторы), так и логическое форматирование (создание каталога и таблицы размещения файлов). После полного форматирования вся хранившаяся на диске информация будет уничтожена.

Быстрое форматирование производит лишь очистку корневого каталога и таблицы размещения файлов. Информация, то есть сами файлы, сохраняется и в принципе возможно восстановление файловой системы.

Логическая структура жестких дисков.

Логическая структура жестких дисков несколько отличается от логической структуры гибких дисков. Минимальным адресуемым элементом жесткого диска является кластер, который может включать в себя несколько секторов. Размер кластера зависит от типа используемой таблицы FAT и от емкости жесткого диска.

На жестком диске минимальным адресуемым элементом является кластер, который содержит несколько секторов.

Эта проблема частично решается с помощью использования таблицы FAT32, в которой объем кластера принят равным 8 секторам или 4 килобайтам для диска любого объема.

В последнее время в основном на компьютерах с ОС Windows используется файловая система NTFS. Файловая система NTFS – улучшенная файловая, обеспечивающая уровень быстродействия и безопасности, а также дополнительные возможности, недоступные ни в одной версии файловой системы FAT. Например, для обеспечения целостности данных тома в файловой системе NTFS используются стандартные технологии записи и восстановления транзакций. В случае сбоя компьютера целостность файловой системы восстанавливается с помощью файла журнала NTFS и данных о контрольных точках.

Физические и логические диски.

При использовании файловых систем FAT размер кластера зависит от объема диска. Получается чем больше жесткий диск, тем больше места на нем пропадает в пустую из-за не совершенной системы адресации файлов. Для борьбы с нерациональными потерями или, просто, для удобства, часто жесткий диск разбивают на несколько разделов. Каждый логический диск имеет свою собственную таблицу размещения файлов, поэтому на нем действует своя система адресации. В итоге потери из-за размеров кластеров становятся меньше.

Что такое форматирование диска?

Почему отличаются реальный информационный объем файла и объем, который он занимает на диске?

Чем отличается полное и быстрое форматирование?

Для чего необходимо проводить дефрагментацию диска?

Что такое логический диск?

5. Дома : записи и практическая работа с анализом

Какое будущее в новом секторе и какая же структура жесткого диска?

Здравствуйте уважаемые читатели, недавно я писал статью про файловые системы, новые и старые, а так же помог выбрать подходящую для вас. Но осталось много непонятных понятий, для полного понятия статьи такие как сектор, кластер, вообще структура жесткого диска и в этой статье я постараюсь вам разъяснить что это такое. А так же о новом секторе большего объема, дает ли он производительность или же опять провал изобретения? Даже если вы знаете это все, не поленитесь прочтите вдруг узнаете что-то новое и вообще оцените мой труд

Читать еще:  Жесткий диск виды и характеристики

Какая же структура жесткого диска

Структура жесткого диска на внешний взгляд достаточна проста, только углубившись можно столкнутся с какими-нибудь трудностями. Но не пугайте начнем с самого начала.

Жесткий диск как и другие магнитные накопители хранят память в дорожкообразной структуре. Следовательно магнитный диск разбит на кольца разного диаметра начиная с внешнего края. Кольца называемые дорожками состоят из кластеров и секторов. Количество дорожек и секторов определяется форматов диска. А формат диска задается при его изготовлении, так что этот параметр изменить нельзя т.е. если размер сектора при изготовлении 512 байт, то с этим ничего уже не поделать. Дорожка разбивается на равные секторы которые обычно занимают 512 байт (о новых чуть ниже). Как раз процесс разбития диска на секторы, называется форматированием. И уже в кластерах хранится информация.

Сектор — это минимальная единица хранения информации на дисковых носителях. Стандартный размер кластера обычно был 512 байт, но сейчас уже существует новый размер в 4 кб, который тоже имеет ряд интересных своих свойств, о которых мы поговорим чуть ниже.

В секторе записывается его заголовок (prefix portion), где хранится начало и конец сектора, а в конце — заключение (suffix portion), в котором содержится контрольная сумма (checksum), нужная для проверки целостности данных. При форматировании в секторе записывается их номера и служебная информация позволяющая определить начало и конец сектора. А так же то что помогает определить форматированную или не отформатированную область диска. По этому из-за служебной информации емкость диска после форматирования немного меньше. На самом деле хоть и говорят что размер сектора 512 байт, но это только объем информации, а сам размер его составляет 571 байт.

К ластер — это единица хранения данных на диске в файловой системе объединенная в один или несколько секторов. Например если диск имеет сектор размером в 512 байт, то кластер размером в 512 байт содержит один сектор. А если кластер имеет размер 2 КБ, то он имеет четыре сектора. Размер кластера зависит от определенных условий, о который я уже писал здесь.

Размер кластера узнать очень просто, для этого достаточно создать текстовый файл и напишите в нем любое слово или даже поставьте одну букву или цифру сохраните и выберите свойство этого файла. В пункте размер на диске будет ваш размер кластера. Главное чтобы файл весил менее 512 байт. Она буква обычно весит 1 байт.

Вся информация хранится в системном хранилище и хранилище данных.

Системная область диска состоит из

  1. Загрузочная запись(MBR), состоящая из системного загрузчика и информационный блок определяющих формат диска.
  2. Файловая система о которой я уже писал.
  3. Корневой каталог, где находится информация о каждом файле (время создания, изменения, размер и т.д.).

Физическая структура жестких дисков

Магнитный жесткий диск состоит из нескольких магнитных дисков и каждый диск разбит на большое количество дорожек с каждой стороны. Основной оценкой жесткого диска является его поверхностная плотность записи определяется по формуле Мбит/дюйм2 и Гбит/дюйм2. В настоящее время плотность дисков достигает 740 Гбит/дюйм2. Специалисты IHS предполагают к 2016 году достичь плотности 1800 Гбит на 1 кв. дюйм!

Для достижения более большей поверхностной плотности необходимо чтобы расстояние между головкой и диском было минимальное.

Диск покрыт тонким слоем вещества независимо от его материала, которое не дает размагничиваться от воздействия внешнего магнитного поля.

Существует два типа слоя:

1. оксидный

2. тонкопленочный.

Оксидный слой образуется в результате разбрызгивания оксида железа в полимерном растворе. Ну если это не интересно, процесс образования можно пропустить А кому интересно продолжим. Получается химическая смесь которая растекается от центра к внешнему краю жесткого диска. Потом диск полируется, затем наносится следующий чистого полимера слой и потом окончательно шлифуется. Чтобы добиться большего объема жесткого диска необходимо чтобы слой был более гладким и тонким. По этому сейчас используют следующий способ.

Тонкопленочный слой более тонкий, прочный и качество намного выше. Благодаря этому способу удалось уменьшить зазор между дисками и следовательно достичь больших объемов.

Этот способ получают путем электролиза. Это тоже самое как при шлифовки хромированной детали. Подложку жесткого диска погружают в ванну с химическим раствором в следствии чего она покрывается несколькими слоями металлической пленки размером в 3 микродюйма. Сначала в камере химические вещества преобразуются в газообразное состояние, а потом накладываются на подложку. Сначала на алюминиевый диск наносится слой фосфорита никеля, а потом магнитный кобальтовый сплав. Этот способ дает наименьшую величину между головкой и поверхностью дисков всего 0,025 мкм, а раньше 0,076 мкм.

Привод диска

И самый главной деталью в жестком диске является привод головки. Они бывают:

1. C шаговым двигателем

2. C подвижной катушкой.

О них я рассказывать не буду, если интересно можете прочитать здесь, но скажу что с шаговым двигателем приводы самые надежные.

Новый размер сектора в 4 кб, к чему готовится?

Вот мы и подошли к самой интересной теме сегодняшнего дня. Как вы уже поняли что такое сектор, это минимальная единица для хранения информации, но т.к. для настоящего времени 512 байт стало совсем мало, новые технологии продвинули размер в 4 кб. Создатели нового сектора его IDEMA (Международная ассоциация производителей жестких дисков) дали имя Advanced Format (новый формат).

Теперь давайте разберем конкретные причины перехода и какие трудности могут возникнуть с новым сектором (плюсы и минусы его).

Главная причиной его перехода возникла из-за больших емкостей жесткого диска, для таких объемов размер в 512 байт становится ограничением в создании больших объемов и эффективности исправления ошибок.

Малые сектора занимают меньшую площадь жесткого диска, что создает повышение плотности диска. Из-за этого возникают проблемы в исправлении ошибок и в следствии изнашивается поверхность диска.

В секторах в 512 байт, максимальный объем исправления ошибок составляет 50 байт. Возникают трудности в исправлении и чтобы более эффективно происходил процесс исправления появился новый объем 4 кб.

Благодаря новому объему достигается большая плотность жесткого диска, что должно дать увеличение объемов жестких дисков.

Надежность в исправлении ошибок благодаря тому, что код исправления ошибок увеличен до 100 байт (в отличии от старого 50 байт) и надежность возросла до 97 %.

Новый формат достиг уменьшение ширины дорожки до 70-80 нм, понизить себестоимость и следовательно снизить стоимость для покупателя. Повысился объем области хранения данных диска, улучшилась производительность (снизить время чтения/записи и доступа, снизился шум, нагрев, механический износ).

Какие трудности нас могут ожидать?

Трудность может ожидать в неподготовленности программного обеспечения, в следствии чего новый сектор может не улучшить характеристики, а наоборот ухудшить! Advanced Format поддерживается начиная с Microsoft Vista с последними обновлениями и более поздними версиями Windows, а также последними выпусками Linux и Mac OS X.

А происходит это из-за того, что программные кластеры не соответствуют друг другу (происходит сдвиг), а так же это касается физических секторов на диске, в следствии чего один кластер перекрывает два сектора, в следствии удваевается число операций чтений/записи, что в конечном случае приводит не только к замедлению работы, но и к большому износу жесткого диска.

Для решения этой ситуации компания Western Digital придумала специальную утилиту WD Align System Utility, благодаря которой производится сдвиг содержимого диска на 1 сектор. А так же специальная, технология Seagate SmartAlign, в дисках Seagate, позволяет использовать технологию нового сектора без специальной утилиты. Western Digital также позволяет сместить блоки переключателем на диске, но возможно проблем с количеством свободных блоков.

Можно так же применять специальные утилиты производителе например одна из них: Paragon Alignment Tool, которые позволяют смещать блоки и не давать падать быстродействию, а наоборот повышать.

Вывод здесь один, наши современные технологии идут все вперед и вперед, новый размер сектора действительно способен повысить быстродействие жесткого диска и системы в целом, но для достижения производительности необходимо внимательно подходить к этой технологии. Перед тем как её применять убедитесь в своем программном обеспечении о наличии поддержки нового формата, чтобы у вас не было трудностей в работе и чтобы Advanced Format принес вам только радость и комфорт!

Ссылка на основную публикацию
Adblock
detector