Tooprogram.ru

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лазер в жестком диске

Как сделать мощный лазер из DVD привода своими руками

Перед началом работы я хочу предостеречь вас, сказав о том, что это действительно очень мощная вещь, которая может повредить ваши глаза, поэтому будьте осторожны.

Шаг 1: Диод

Сначала сделаем главные вещи. Нам нужно снять со старого ДВД привода лазерный диод. Откройте привод, найдите движущуюся часть с линзой. Обычно там находится два диода — инфракрасный для CD и просто красный для DVD. Аккуратно отсоедините их, предварительно сняв статическое электричество.

Не выбрасывайте остальные части — линзы могут быть полезны в этом проекте, а мелкие неодимовые магниты могут пригодиться для других проектов. Сказать честно, у меня нет DVD повода вот уже 3 года, поэтому я просто купил новые диоды LPC836 на Ali — это самые мощные диоды, использующиеся для приводов.

Шаг 2: Оптика

Теперь поговорим об оптике для самодельного лазера. Как я уже говорил, вы можете использовать родные линзы с DVD, но нужно будет подумать как их закрепить. Я рекомендую купить корпус aixiz (Ali) — стоит недорого и убережёт вас от проблем с правильной фокусировкой луча. Поместим наш диод в корпус.

Шаг 3: Питание

Следующий шаг — ограничитель тока (драйвер). К сожалению, не получится просто соединить диод батарейкой — он сразу же сгорит. Поэтому нам нужно собрать простую схему. Если, прежде чем посмотреть моё видео, вы уже гуглили что-то о том как сделать лазер из дисковода, то, вероятно, видели одну простую схему. Я не рекомендую так делать, так как эта схема 100% убьёт ваш диод, это всего лишь вопрос времени.

Для сборки правильной схемы нам понадобится всего два компонента: Чип LM317 (Ali) и резистор 3.3Ohm 2W (Ali). Я также использовал небольшой радиатор, но чип остается всегда холодным — вам он не понадобится.

Припаяйте резистор к первым двум клеммам LM317. Также припаяйте по проводу к первой и последней клемме — первый пойдёт на плюс лазерного диода, а третий на плюс блока питания, минус идёт прямо от батарейки на лазер. Один важный момент: так как я использовал новый диод, я был 100% уверен, что он выдержит силу тока, если вы не уверены в этом, то последовательно соедините два резистора на 3.3 Ohm — это обезопасит диоды практически от любого DVD привода. Для защиты от замыкания используйте термоусадку. Всё готово!

Читать еще:  Как отформатировать системный жесткий диск

Шаг 4: Финал

Для тех, у кого немного больше опыта, я предлагаю сделать своими руками другую схему, выложенную для ознакомления. Когда я определился с корпусом, я сделал радиатор из алюминиевой шайбы. Я планировал припаять все платы к корпусу лазера но не нашел хорошего флюса, поэтому просто вложил всё внутрь. Лучшее, что я смог придумать — это приклеить всё по местам горячим пистолетом, а затем вдавить поверх алюминиевый радиатор с источником лазера.

Лазерные жесткие диски изнутри

ВВЕДЕНИЕ

Последние достижения могут наконец открыть путь к новой технологии хранения данных, объединяющей в себе оптические и магнитные технологии, что приведет к появлению накопителей большой емкости, работающих на скоростях, в тысячи раз превышающих существующие, и имеющих при этом более высокую надежность.

МАГНИТО-ОПТИЧЕСКАЯ КОНСТРУКЦИЯ

В 2006 году доктор Даниэль Стэнсю (Daniel Stanciu), работавший тогда над своей докторской диссертацией, и доктор Фредерик Ханстин (Fredrik Hansteen) открыли способ изменения полярности магнита при помощи света. Еще более впечатляющим был тот факт, что изменение полярности магнита требовало очень короткого лазерного импульса — всего около 40 фемтосекунд (фемтосекунда равна одной миллионной наносекунды). Как говорит Стенсю, в 2006 году такое считалось попросту невозможным. Даже его профессор не верил молодому исследователю, пока тот позже не продемонстрировал ему этот переключатель в лаборатории.

Конструкция устройства для магито-оптики

В то время смена полярности магнита при помощи лазера считалась невозможной, и даже после демонстрации этого явления привычная физика была неспособна объяснить его природу. С тех пор несколько групп физиков по всему миру работали над созданием теоретической основы этих инновационных исследований, и добились определенного успеха в объяснении данного феномена, получившего название «чистооптическая инверсия намагниченности» (all-optical magnetization reversal).

Читать еще:  Запись на жесткий диск

Схематичный чертеж экспериментального прибора для накачки с разрешением во времени, используемого для изучением ультра-быстрой динамики намагничивания

В начале 1950-ых годов физик Колумбийского университета Чарльз Таунз работал над исследованием физики спектроскопии и микроволн (его интерес к этой области был обусловлен работой над радаром в годы второй мировой войны). Таунз (и двое советских физиков независимо от него) пришли к концепции мазера. Мазер, излучающий когерентные электромагнитные волны в микроволновом диапазоне при помощи вынужденного излучения, был новаторской идеей, и в то время многие ученые (включая и выдающихся) даже в теории не допускали возможность существования таких устройств (не говоря уже о возможности создания их на самом деле).

В своей биографии Таунз упоминает об истории, имевшей место вскоре после демонстрации мазера: » В 1954 году, вскоре после того как Джеймс Гордон и я построили второй мазер и показали, что частота его микроволнового излучения была действительно достаточно чистой, я посетил Данию и встретился с Нильсом Бором. Во время прогулки по улице он спросил меня о моей работе. Я описал ему мазер и его впечатляюшие характеристики. «Но ведь это же невозможно» — воскликнул он. Я заверил его, что это не так. Аналогично, на приеме в Принстоне, венгерский математик Джон фон Ньюман спросил меня, над чем я работаю. Я рассказал ему о мазере и чистоте его излучения. «Это не может быть правдой!», заявил тот. Я объяснил ему, что это уже существует и было продемонстрировано. Такие протесты не были безграмотным мнением людей о непонятных законах физики; просто это протеворечило всему, что они знали «.

История Стенсю выглядит весьма похожей на историю с мазером. Чистооптическая инверсия намагниченности считалась невозможной до тех пор, пока не была продемонстрирована в лаборатории. Физикам требовалось определенное подтверждение, прежде чем они стали принимать эту идею во внимание. Но как только она получила одобрение научного сообщества, сразу стали находитьяс и практические применения для нее.

Читать еще:  Пароль на биос acer

Схематичный чертеж экспериментального прибора для накачки с разрешением во времени, используемого для изучением ультра-быстрой динамики намагничивания

В случае оптической инверсии намагниченности, одним из наиболее очевидных применений является сверхбыстрый магнитный накопитель информации. Этот будущий вид магнито-оптического гибрида будет потенциально не только в тысячи раз быстрее существующих магнитных устройств хранения данных, но и устранит необходимость вращения дисков, применявшуюся в каждом винчестере, начиная с созданной фирмой IBM в середине 1950-ых годов модели 305 RAMAC. Такое изменение существенно повысит надежность магнитных накопителей, которые на сегодняшний день часто выходят из строя из-за механических повреждений.

В своем недавнем интервью Стенсю рассказывал о некоторых проблемах, стоящие на пути развития этой новой технологии, а также об ее преимуществах. По его словам, две основные проблемы, связанные с практическим применением данной технологии, следующие:

Наконец, в 2008 ноду оба препятсвия были преодолены:

Схематичный чертеж экспериментального прибора для накачки с разрешением во времени, используемого для изучением ультра-быстрой динамики намагничивания

Хотя оба главных препятствия были преодолены, Стенсю считает, что потребуется еще не менее пяти лет, прежде чем мы увидим серийно выпускаемые гибридные лазерные накопители. Даже с доступными сегодня дешевыми пикосекундными лазерами такие гибридные устройства смогут достичь феноменальной скорости в 1 Терабит/сек. Для сравнения, самые скоростные современные винчестеры могут достигать скорости передачи данных всего около 1 Гбита в секунду, а твердотельные флэшки — 2-3 Гбит/сек. В более отдаленном будущем приводы, основанные на фемтосекундных лазерах, смогут достичь невообразимой скорости в 100 Тбит/сек и даже выше.

Ссылка на основную публикацию
Adblock
detector