Tooprogram.ru

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методы записи на жесткий диск

FAQ : Винчестеры (HDD) : Общие вопросы

—>

Разделы FAQ

SCSI/SAS/SATA »
RAID »
Процессоры Intel® »
Винчестеры (HDD) »
KVM (КВМ) »
ПО Microsoft »
ПО Oracle »
Монитор / Видео »
Другое »
Сервис »
Общие вопросы

  1. Что такое накопитель на жёстких магнитных дисках, НЖМД, жёсткий диск, хард, харддиск, HDD, HMDD или винчестер?
  2. Что такое низкоуровневое форматирование?
  3. Производители

В: Что такое накопитель на жёстких магнитных дисках, НЖМД, жёсткий диск, хард, харддиск, HDD, HMDD или винчестер?
О: Накопитель на жёстких магнитных дисках, НЖМД , жёсткий диск, хард, харддиск, HDD , HMDD или винчестер, (англ. Hard (Magnetic) Disk Drive, HDD , HMDD ) — энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Является основным накопителем данных практически во всех современных компьютерах.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В некоторых НЖМД используется одна пластина, в других — несколько на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образуемого у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках 5-10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков, головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

По материалам с сайта wikipedia.org.

В: Что такое низкоуровневое форматирование?
О: На заключительном этапе сборки НЖМД (винчестера) поверхности пластин форматируются — на них формируются дорожки и сектора. Ранние «винчестеры» (подобно дискетам) содержали одинаковое количество секторов на всех дорожках. На пластинах современных «винчестеров» дорожки сгруппированы в несколько зон. На дорожках внешней зоны секторов больше, и чем зона ближе к центру, тем меньше секторов приходится на каждую дорожку зоны. Это позволяет добиться более равномерной плотности записи и, как следствие, увеличения ёмкости пластины без изменения технологии производства.

Границы зон и количество секторов на дорожку для каждой зоны хранятся в ПЗУ блока электроники.

Кроме того, в действительности на каждой дорожке есть дополнительные резервные сектора. Если в каком либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным ( remapping ). Конечно, данные, хранившиеся в нём, будут потеряны, но ёмкость диска не уменьшится. Существует две таблицы переназначения: одна заполняется на заводе, другая в процессе эксплуатации.

Таблицы переназначения секторов также хранятся в ПЗУ блока электроники.

Во время операций обращения к «винчестеру» блок электроники самостоятельно определяет, к какому физическому сектору следует обращаться и где он находится (с учётом зон и переназначений). Поэтому со стороны внешнего интерфейса «винчестер» выглядит однородным.

В связи с вышеизложенным существует очень живучая легенда о том, что корректировка таблиц переназначения и зон может увеличить ёмкость жёсткого диска. Для этого существует масса утилит, но на практике оказывается, что если прироста и удаётся добиться, то незначительного. Современные диски настолько дёшевы, что не стоит потраченных на это ни сил, ни времени.

По материалам с сайта wikipedia.org.

В: Производители
О: Большая часть всех винчестеров производятся всего несколькими компаниями: Seagate » , Western Digital » , Samsung » , а также ранее принадлежавшим IBM » подразделением по производству дисков фирмы Hitachi » . Fujitsu » продолжает выпускать жёсткие диски для ноутбуков и SCSI -диски, но покинула массовый рынок в 2001 году. Toshiba » является основным производителем 2,5- и 1,8-дюймовых ЖД для ноутбуков. Одним из лидеров в производстве дисков являлась компания Maxtor » , известная своими «умными» алгоритмами кэширования. В 2006 году состоялось слияние Seagate » и Maxtor » . В середине 1990-х годов существовала компания Conner, которую купила Seagate » .

Технологии записи данных на жесткие диски

1.6 Технологии записи данных на жесткие диски

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них, изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод параллельной записи.

На данный момент это всё ещё самая распространенная технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей — доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². В настоящее время происходит постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи

Метод перпендикулярной записи — это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современных образцов — 15-23 Гбит/см², в дальнейшем планируется довести плотность до 60—75 Гбит/см².

Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи

Метод тепловой магнитной записи (англ. Heat-assisted magnetic recording, HAMR) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2009 год), есть лишь экспериментальные образцы, но их плотность уже превышает 150 Гбит/см². Разработка HAMR-технологий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 2,3−3,1 Тбит/см², а представители Seagate Technology предполагают, что они смогут довести плотность записи HAMR-носители до 7,75 Тбит/см².[6] Широкого распространения данной технологии следует ожидать после 2010 года.

1.7 Размещение данных на жестком диске

О том, что конфигурация диска задается через количество цилиндров, головок и секторов на дорожке, все знают с начала эпохи PC. Хотя еще несколько лет тому назад точное указание в программе SETUP всех этих параметров диска было обязательным, сейчас это не так. Строго говоря, те параметры диска, которые вы видите в разделе SETUP Standard CMOS Setup, как правило, ничего общего не имеют с реальными параметрами диска, причем вы можете заметить, что эти параметры меняются в зависимости от вида трансляции геометрии диска — Normal, LBA и Large. Normal — геометрия в соответствии с данной производителем в документации на диск и не позволяет DOS увидеть более чем 504 Mb (1 Mb — 1048576 байт). LBA — Logical Block Address — эта установка позволяет видеть DOS диски объемом до 4 Gb. Large используется такой операционной системой, как Unix. Параметры, установленные в SETUP, преобразуются в реальные логикой управления жестким диском. Многие современные операционные системы работают с диском через LBA, минуя BIOS.

Существует несколько способов физического сохранения данных на жестком диске. Определить способ отображения данных на диске можно, только используя различные программы определения быстродействия диска (benchmark). В программу Winbench 98/99 включен High-end тест жесткого диска, где оцениваются не достаточно отвлеченные в настоящее время 2 параметра — скорость передачи данных и время доступа, а проверяется, для каких задач и для каких наиболее популярных программ, активно работающих с диском, диск наиболее пригоден.

Рисунок 1.1 — Вертикальное отображение размещения данных на жестком диске

Обычные жесткие диски используют «вертикальное» отображение. Данные записываются сначала на одном цилиндре сверху вниз, затем головки переходят на другой цилиндр и т.д.

Рисунок 1.2 — Горизонтальное отображение размещения данных на жестком диске

При «горизонтальном» отображении сначала данные записываются последовательно от цилиндра к цилиндру на поверхности одного диска, затем также на поверхности следующего диска и т.д. Такой способ лучше подходит для записи непрерывного высокоскоростного потока данных, например, при записи «живого» видео.

Комбинированный способ отображения, использующий как «вертикальный» так и «горизонтальный» способ.

При тестировании таких дисков видно, что чем дальше от начальных цилиндров, тем хуже параметры диска. Это связано с тем, что на внешних дорожках размещается больше секторов и считывание/запись выполняется быстрее.

В справедливости этого легко убедиться, запустив Winbench 97/98/99, выбрав сначала диск C для теста диска, а затем последний логический диск (желателен диск объемом не менее 2.5 Gb). Разница в оценке быстродействия диска для модели WD AC32500 составила 15%.

Реально диск разделен на зоны, в каждую из которых входит обычно от 20 до 30 цилиндров с одинаковым количеством секторов. Эти зоны также называются «notches».

Чем выше плотность записи на диск, тем выше будет скорость считывания с него. Именно поэтому при оценке параметров диска следует внимательно смотреть на внутреннюю скорость передачи данных. Внутренняя скорость передачи данных прямо пропорциональна плотности записи на диск и скорости вращения шпинделя. Так как увеличивать скорость вращения диска достаточно сложно — увеличивается энергопотребление, шум, возникают проблемы с теплоотводом, то наиболее оптимальный путь повышения производительности — это увеличение плотности записи на диск. Именно поэтому современный жесткий диск со скоростью вращения 5400 об/мин легко опережает по производительности диск с 7200 об/мин, выпущенный двумя годами ранее. Все производители жестких дисков в первую очередь и заняты проблемой повышения плотности записи. При прочих равных условиях, из двух накопителей равной емкости быстрее будет работать накопитель с меньшим количеством дисков, т.е. с большей плотностью записи.

HDD будущего: перпендикулярная запись и не только

Что делать? Информационный бум продолжается, терабайт данных уже ни у кого не вызывает трепета. А привычная технология создания жестких дисков достигла физических пределов увеличения плотности записи. Неужели 500 Гбайт – это максимум, что можно поместить на стандартный 3,5-дюймовый жесткий диск ближайшего будущего?

К счастью, нет. Наука не стоит на месте, разрабатываются и находят коммерческое применение совершенно фантастические проекты. С некоторыми из них мы вас сегодня познакомим. Но основной упор будет сделан на фактически готовую к выходу на рынок технологию – перпендикулярную запись. Пора узнать, какими станут жесткие диски в ближайшие 5-10 лет.

Экскурс в прошлое

История накопителей на базе жестких дисков началась в 1952 году, когда корпорация IBM предложила одному из своих ведущих инженеров, Рейнольду Джонсону, возглавить новую исследовательскую лабораторию. В те годы приоритетной задачей был поиск альтернативы чрезвычайно медленным перфокартам и магнитным лентам, требовались высокоемкие накопители информации с произвольным доступом.

Результатом пятилетнего труда команды Рейнольда стало создание в 1955 году накопителя на жестких дисках IBM 350 Disk File, в 1956 году вошедшего в состав IBM RAMAC. Накопитель состоял из 50 дисков диаметром 24 дюйма, вращавшихся со скоростью 1200 об/мин. Среднее время доступа к произвольной ячейке составляло 1 с, плотность – 2 кбит на квадратный дюйм, емкость – 5 Мбайт. Размер накопителя был сравним с двумя современными двухкамерными холодильниками.

Первый HDD емкостью 5 Мбайт

С тех пор плотность записи на пластины возросла более чем в 60 миллионов раз (!), достигнув отметки в 120 Гбит/дюйм 2 .

На протяжении 50 лет технология записи не менялась, а только уменьшались размеры жестких дисков, повышалась скорость вращения шпинделя и емкость пластин. Царствовала параллельная запись.

Технология параллельной записи на магнитные диски

Схема технологии параллельной записи

Данные записываются на диск, покрытый магнитным записывающим слоем. Любой магнитный материал (например, оксид железа) состоит из доменов — областей, внутри которых магнитные моменты всех атомов направлены в одну сторону. Каждый домен имеет большой суммарный момент, который в исходном состоянии может быть направлен произвольно. Под действием внешнего магнитного поля домены могут менять направление магнитного момента.

Именно этот эффект используется при записи. Информация хранится не на одном домене, а на областях (частицах), состоящих минимум из 70-100 «зерен». Если магнитный момент такой частицы совпадает с направлением движения считывающей головки – получаем «0», если противоположен – «1». Так как две соседние области имеют противоположное направление моментов, на границе между ними часть доменов может потерять стабильность и произвольно менять направление магнитного момента. Но об этом позже.

Конструкция считывающей головки

Главной характеристикой магнитной пластины является плотность записи. Она состоит из нескольких показателей: линейная плотность — плотность на один дюйм дорожки (Bits per Inch, BPI), количество дорожек на дюйм диаметра (Tracks per Inch, TPI), и плотность на квадратный дюйм поверхности (areal density, произведение первых двух).

Чтобы увеличить емкость накопителя, можно пойти двумя путями: увеличить количество пластин или увеличить плотность записи на пластину. Первый путь означает значительное усложнение механического устройства накопителя, что зачастую просто невозможно, да и экономически не выгодно. Поэтому основным показателем, определявшим рост емкости жестких дисков за последние 50 лет, являлась плотность записи на пластину.

Уроки масштабирования

Основы масштабирования в магнитной записи точно такие же, как и в теории трехмерного магнитного поля. Если магнитные свойства материалов постоянны, то конфигурация поля остается неизменной при изменении всех токов и размеров во всех плоскостях в s раз. При этом плотность записи также увеличивается в s раз. Однако следует учитывать еще два важных для практического использования фактора: скорость вращения дисков и скорость передачи данных. На практике скорость вращения остается неизменной, скорость передачи данных растет, а токи постепенно уменьшаются, поэтому приходится изобретать новые методы чтения.

В теории, если необходимо увеличить TPI в 2 раза, BPI в 2 раза и areal density в 4 раза, достаточно уменьшить все размеры в 2 раза, сохранить скорость вращения той же и удвоить скорость передачи данных. Если материалы и пропорции сохраняются, то устоявшийся принцип соблюдается.

На практике такой способ масштабирования сталкивается с 3 сложностями:

  • Сохранение или увеличение скорости считывания при увеличении плотности записи может быть невозможно для существующей электроники;
  • Для увеличения производительности приводов приходится увеличивать скорость вращения дисков, что также сказывается на скорости считывания;
  • Уменьшение масштабов уменьшает уровень сигналов чтения, что резко увеличивает шумы в магнитных полях. Уменьшение соотношения сигнал/шум требует создания более чувствительных считывающих головок. Поэтому индустрия перешла от индуктивных головок к магниторезистивным (MR), затем к GMR-головкам, использующим эффект «гигантской магниторезистивности», и даже к TMR-головкам, построенным на туннельном эффекте.

Тем не менее, до последнего времени производители накопителей шли именно таким путем, пока не подошли вплотную к так называемому суперпарамагнитному пределу , который сделал невозможным дальнейшее наращивание плотности традиционными методами.

Суперпарамагнетизм

Как известно из курса физики, свойством любого магнетика является анизотропия. Домен с большим трудом намагничивается в одном направлении, и легко – в противоположном (по «легкой оси»). Его энергия пропорциональна sin 2 θ , где θ — угол между углом намагниченности домена и осью предпочтительного намагничивания. В условиях абсолютного нуля в изолированной системе намагниченный домен занимает положение в одном из состояний с наименьшей энергией (т.е. под углом 0 или 180 градусов). Для представления информации эти положения принимаются за логический ноль или единицу. При изменении направления намагниченности и повышении температуры домен может поменять направленность магнитного момента. Уменьшение размеров частицы в 2 раза означает уменьшение энергетического барьера, который необходимо преодолеть для смены направления, поэтому она становится значительно менее стабильной. Период стабильности может измениться со 100 лет (стабильная частица) до 100 нс (при таком периоде частицу вообще сложно назвать постоянным магнитом). В последнем случае мы получим на пластине огромное количество хаотически расположенных намагниченных частиц, произвольно меняющих свою направленность. Это явление называется суперпарамагнетизмом, потому что макроскопические свойства такой среды похожи на свойства парамагнетиков.

В реальной среде ситуация оказывается еще более сложной. При традиционном методе параллельной записи на диск магнитные частицы располагаются магнитными моментами параллельно плоскости диска. А, как известно, два постоянных магнита, расположенных одинаковыми полюсами друг к другу, отталкиваются, а разными – притягиваются. Значит, между ними тоже происходит энергетическое взаимодействие. У границ намагниченных частиц возникает поле рассеяния, которое забирает энергию у магнитных полей обеих частиц. В результате крайние домены частицы теряют часть заряда и становятся менее стабильными.

Чтобы это преодолеть, ученые предлагают несколько методов, но все они лишь слегка отодвигают парамагнитный предел. Необходимо принципиально новое решение.

Технологии записи данных

В последнее время в жестких дисках используются магниторезистивные головки, а для процесса считывания применяется магниторезистивный эффект. В данной технологии изменение магнитного поля около головки приводит к изменению её сопротивления, которое меняется в зависимости от изменения напряженности магнитного поля. Использование магниторезистивных головок позволяет увеличить вероятность достоверности считывания информации. Особенно это заметно при высоких плотностях записи.

Метод параллельной записи

В данном методе каждый бит информации записывается с помощью небольшой головки, которая, в процессе прохода над поверхностью диска, намагничивает множество горизонтальных дискретных областей — доменов. Каждый домен, в зависимости от намагниченности, будет являться или логическим нулём, или логической единицей.

При таком способе записи, максимальная плотность составляет порядка 23 Гбит/см². Хоть это и немало, но сейчас метод параллельной записи постепенно вытесняется другим, а именно методом перпендикулярной записи.

Метод перпендикулярной записи

Особенностью данной технология является то, что биты информации сохраняются не в горизонтальных, а в вертикальных доменах. В этом случае появляется возможность использования более сильных магнитных полей, а также снижается площадь материала, необходимая для записи 1 бита. Плотность записи у современных образцов, использующих метод перпендикулярной записи достигает 60 Гбит/см².

Магнитная запись тепловым методом или термоассистируемая магнитная запись

На сегодняшний день самым перспективным и активно разрабатывающимся методом, является метод тепловой магнитной записи (англ. Heat-assisted magnetic recording, HAMR). Этот метод основан на технологии точечного подогрева диска, при котором головка может намагничивать довольно мелкие области поверхности. После охлаждения диска его намагниченность «закрепляется». В 2009 году накопители данного типа в серийное производство запущены не были. Существовали только экспериментальные образцы, с плотностью записи до 150 Гбит/см². Не смотря на то, что HAMR-технологии разрабатываются уже довольно давно, эксперты пока не могут прийти к единому мнению относительно максимальной плотности записи. Компания Hitachi оценивает максимальную плотность в 2,3−3,1 Тбит/см², а представители Seagate Technology приводят более оптимистичные значения: до 7,75 Тбит/см². Скорее всего данная технология начнет массово использоваться в 2011—2012 годах.

История развития жестких дисков

В процессе развития, жёсткие диски существовали в шести различных типоразмерах.

    • 1956 год — в составе IBM 305 RAMAC (первого серийного компьютера) появился жёсткий диск IBM 350. Он занимал целый ящик размером с холодильник и весил 971 кг. Он состоял из 50 покрытых чистым железом тонких дисков, имеющих диаметр 610 мм. Общий объём его памяти составлял порядка 5 миллионов 6-битных байт, то есть примерно 3,5 МБ, если перевести в 8-битные байты.
    • 1980 год — появился тот самый «винчестер»: 5,25-дюймовый Shugart ST-506 объемом 5 МБ.
    • 1981 год — новая модель 5,25-дюймового Shugart: ST-412 объемом 10 МБ
    • 1986 год — появление стандартов SCSI, ATA( >

    Читать еще:  Как выглядит жесткий диск внутри
    Ссылка на основную публикацию
    Adblock
    detector