Tooprogram.ru

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Первый накопитель на жестких магнитных дисках

Первый накопитель на жестких магнитных дисках

Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

ОЗУ Кэш Процессор»>

В состав внешней памяти компьютера входят:

  • накопители на жёстких магнитных дисках;
  • накопители на гибких магнитных дисках;
  • накопители на компакт-дисках;
  • накопители на магнито-оптических компакт-дисках;
  • накопители на магнитной ленте (стримеры) и др.

1. Накопители на гибких магнитных дисках

Гибкий диск (англ. floppy disk), или лискета, — носитель небольшого объема информации, представляющий собой гибкий пластиковый диск в защитной оболочке. Используется для переноса данных с одного компьютера на другой и для распространения программного обеспечения.


Устройство дискеты

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным окислом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке сделаны с двух сторон радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.

Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавливается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам), которые делятся на секторы. Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.


Рис. 2.7. Поверхность
магнитного диска

В настоящее время наибольшее распространение получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive), автоматически в нем фиксируется, после чего механизм накопителя раскручивается до частоты вращения 360 мин -1 . В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней. Накопитель связан с процессором через контроллер гибких дисков.

В последнее время появились трехдюймовые дискеты, которые могут хранить до 3 Гбайт информации. Они изготовливаются по новой технологии Nano2 и требуют специального оборудования для чтения и записи.

2. Накопители на жестких магнитных дисках

Если гибкие диски — это средство переноса данных между компьютерами, то жесткий диск — информационный склад компьютера.

Накопитель на жёстких магнитных дисках (англ. HDD — Hard Disk Drive) или винчестерский накопитель — это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины — платтеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации — программ и данных.


Рис. 2.8. Винчестерский накопитель
со снятой крышкой корпуса

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки — на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух. Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

Винчестерские накопители имеют очень большую ёмкость: от 10 до 100 Гбайт. У современных моделей скорость вращения шпинделя (вращающего вала) обычно составляет 7200 об/мин, среднее время поиска данных 9 мс, средняя скорость передачи данных до 60 Мбайт/с. В отличие от дискеты, жесткий диск вращается непрерывно. Все современные накопители снабжаются встроенным кэшем (обычно 2 Мбайта), который существенно повышает их производительность. Винчестерский накопитель связан с процессором через контроллер жесткого диска.

3. Накопители на компакт-дисках

Здесь носителем информации является CD-ROM (Сompact Disk Read-Only Memory — компакт диск, из которого можно только читать).

CD-ROM представляет собой прозрачный полимерный диск диаметром 12 см и толщиной 1,2 мм, на одну сторону которого напылен светоотражающий слой алюминия, защищенный от повреждений слоем прозрачного лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.

Информация на диске представляется в виде последовательности впадин (углублений в диске) и выступов (их уровень соответствует поверхности диска), расположеных на спиральной дорожке, выходящей из области вблизи оси диска. На каждом дюйме (2,54 см) по радиусу диска размещается 16 тысяч витков спиральной дорожки. Для сравнения — на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек. Емкость CD достигает 780 Мбайт. Информация наносится на диск при его изготовлении и не может быть изменена.

CD-ROM обладают высокой удельной информационной емкостью, что позволяет создавать на их основе справочные системы и учебные комплексы с большой иллюстративной базой. Один CD по информационной емкости равен почти 500 дискетам. Cчитывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске. CD-ROM просты и удобны в работе, имеют низкую удельную стоимость хранения данных, практически не изнашиваются, не могут быть поражены вирусами, c них невозможно случайно стереть информацию.

В отличие от магнитных дисков, компакт-диски имеют не множество кольцевых дорожек, а одну — спиральную, как у грампластинок. В связи с этим, угловая скорость вращения диска не постоянна. Она линейно уменьшается в процессе продвижения читающей лазерной головки к краю диска.

Рис. 2.9. Накопитель CD-ROM

Для работы с CD-ROM нужно подключить к компьютеру накопитель CD-ROM (рис. 2.9), преобразующий последовательность углублений и выступов на поверхности CD-ROM в последовательность двоичных сигналов. Для этого используется считывающая головка с микролазером и светодиодом. Глубина впадин на поверхности диска равна четверти длины волны лазерного света. Если в двух последовательных тактах считывания информации луч света лазерной головки переходит с выступа на дно впадины или обратно, разность длин путей света в этих тактах меняется на полуволну, что вызывает усиление или ослабление совместно попадающих на светодиод прямого и отраженного от диска света.

Если в последовательных тактах считывания длина пути света не меняется, то и состояние светодиода не меняется. В результате ток через светодиод образует последовательность двоичных электрических сигналов, соответствующих сочетанию впадин и выступов на дорожке.


Профиль дорожки CD-ROM

Различная длина оптического пути луча света в двух последовательных тактах считывания информации соответствует двоичным единицам. Одинаковая длина соответствует двоичным нулям.

Сегодня почти все персональные компьютеры имеют накопитель CD-ROM. Но многие мультимедийные интерактивные программы слишком велики, чтобы поместиться на одном CD. На смену технологии СD-ROM стремительно идет технология цифровых видеодисков DVD. Эти диски имеют тот же размер, что и обычные CD, но вмещают до 17 Гбайт данных, т.е. по объему заменяют 20 стандартных дисков CD-ROM. На таких дисках выпускаются мультимедийные игры и интерактивные видеофильмы отличного качества, позволяющие зрителю просматривать эпизоды под разными углами камеры, выбирать различные варианты окончания картины, знакомиться с биографиями снявшихся актеров, наслаждаться великолепным качеством звука.

4. Записывающие оптические и магнитооптические накопители

· Записывающий накопитель CD-R (Compact Disk Recordable) способен, наряду с прочтением обычных компакт-дисков, записывать информацию на специальные оптические диски емкостью 650 Мбайт. В дисках CD-R отражающий слой выполнен из золотой пленки. Между этим слоем и поликарбонатной основой расположен регистрирующий слой из органического материала, темнеющего при нагревании. В процессе записи лазерный луч нагревает выбранные точки слоя, которые темнеют и перестают пропускать свет к отражающему слою, образуя участки, аналогичные впадинам. Накопители CD-R, благодаря сильному удешевлению, приобретают все большее распространение.

Рис.2.10. Накопитель CD-MO

· Накопитель на магнито-оптических компакт-дисках СD-MO (Compact Disk — Magneto Optical) (рис. 2.10). Диски СD-MO можно многократно использовать для записи. Ёмкость от 128 Мбайт до 2,6 Гбайт.

· Записывающий накопитель CD-R (Compact Disk Recordable) способен, наряду с прочтением обычных компакт-дисков, записывать информацию на специальные оптические диски. Ёмкость 650 Мбайт.

· Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.

5. Накопители на магнитной ленте (стримеры) и накопители на сменных дисках

Стример (англ. tape streamer) — устройство для резервного копирования больших объёмов информации. В качестве носителя здесь применяются кассеты с магнитной лентой ёмкостью 1 — 2 Гбайта и больше.

Рис. 2.11. Накопитель
на сменных дисках

Стримеры позволяют записать на небольшую кассету с магнитной лентой огромное количество информации. Встроенные в стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед её записью и восстанавливать после считывания, что увеличивает объём сохраняемой информации.

Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

В последнее время всё шире используются накопители на сменных дисках, которые позволяют не только увеличивать объём хранимой информации, но и переносить информацию между компьютерами. Объём сменных дисков — от сотен Мбайт до нескольких Гигабайт.

Магнитные хроники. История жестких дисков

Трудно в это поверить, но жесткие диски не меняются вот уже более тридцати лет. Однако это не значит, что они всегда выглядели так, как мы привыкли. Когда компьютерная индустрия только начинала свой путь, не было ни вращающихся пластин, ни считывающих головок, ни контроллеров, ни тонких интерфейсов. Мы решили рассказать вам, на чем же в те времена хранили информацию, и забрались в самые дебри истории.

Читать еще:  Жесткий диск описание устройства

Бумажки и дырочки

Вообще, хронологию накопителей можно разделить на три параллельные ветви — перфокарты, ленты и магнитные барабаны. Первые считаются самым древним носителем информации, так что с них и начнем.

Свой старт в истории перфокарты — бумажки с дырочками — взяли на ткацких станках в 1808 году, в качестве же «электронных носителей» их додумались использовать в 1832-м, причем инициатором был наш соотечественник — Семен Корсаков, разработавший машину для «сравнения идей». Однако настоящий толчок к применению перфокарт в вычислительной технике дало изобретение Германа Холлерита.

В середине 1880-х выпускник Колумбийского горного университета поступил на госслужбу и принял участие в утомительной переписи населения, проводимой ручным способом. Это кропотливое занятие настолько ему не понравилось (еще бы, восемь лет считали), что он задался целью изобрести машину, которая все выполнит за пару месяцев. Сказано — сделано.

Несколько лет упорного труда, и в 1890-м Холлерит уже демонстрировал правительству США свой табулятор. Основная его идея была вот в чем. На каждого жителя страны создавалась перфокарта, вмещавшая 288 позиций (12 по горизонтали и 24 по вертикали), описывающих «базовые параметры» типа роста, пола, семейного положения.

Напротив собранных данных в карте проделывались отверстия, после чего ее загружали в машину Холлерита, та считывала дырочки, суммировала ответы и выводила результаты на циферблаты. В конце дня показания с них списывались, а счетчики обнулялись. Госаппарату конструкция пришлась по душе, и с Германом тут же был подписан нужный контракт. Как оказалось, не зря: на следующую перепись населения потратили не 13 лет, как предполагалось изначально, а всего два месяца.

Впрочем, сколько там ушло времени — не так интересно, как то, что изобретение Холлерита спровоцировало создание фирмы Tabulating Machine Company, которую в 1905 году приобрела Computing Tabulating Recording Company, в будущем известная как International Business Machines (IBM).

Лента счастья

Перфокарты продержались сравнительно долго, но их недостатки были слишком очевидны: бумага рвалась, хранить могла всего 70 КБ, да и считывать с нее информацию было, мягко говоря, не очень удобно. Так что, пока бумажки не перевелись, индустрия начала осваивать еще один метод хранения — магнитную пленку, ту самую, из старых видеомагнитофонов, плееров и бобинных проигрывателей.

Началось все, как водится, издалека. Первым кодировать информацию при помощи магнитных полей догадался Оберлин Смит. В 1888 году он выдал следующую идею: если напихать в обычную веревку металлической стружки и задать каждой частице свой вектор намагниченности — получится аудиозапись. К сожалению, монетизировать изобретение Оберлин не сумел, за него это сделал датчанин Вальдемар Поульсен.

Он отказался от использования бечевки, взял за основу тонкую проволоку, намотал ее на барабан и придумал, как в автоматическом режиме производить на нее запись. Не знаем, сколько он там получил за разработку, но на «телеграфон» патент ему вручили, а устройства на его базе с успехом использовались в качестве диктофонов примерно до тридцатых годов прошлого столетия. То есть ровно до того момента, как немецкий инженер Фриц Пфлюмер ввел в обиход хорошо известную нам магнитную пленку.

В 1927 году ученый покрыл бумагу оксидом железа, накрутил ее на катушку и доказал — таким образом хранить аудио гораздо удобнее, чем на проволоке, а уж редактировать и подавно. Любой кусок можно вырезать и вклеить новый. В итоге — мировая популярность и востребованность по сей день.

А вот до компьютеров новинка добиралась долго. Применить ее для цифровых данных догадались Джей Преспер Экерт и Джон Мокли, создатели нашумевшей машины UNIVAC, представленной 31 марта 1951 года. Для нее соорудили огромный шкаф UNISERVO с двумя «вертушками», перегоняющими тяжелую металлическую пленку через считывающую головку. Программы и результаты работы записывались на носитель длиной 365 метров и шириной 12,65 мм. Плотность хранения составляла 128 бит на дюйм (для сравнения, современный 3 ТБ жесткий диск на том же пространстве умещает по 620 ГБ).

Казалось бы, мало, но для индустрии тех лет хватало с избытком, и уже в 1952-м IBM придумала стандарт 7 Track, который вместо бумаги предлагал использовать более надежную пластиковую подложку, а саму запись вести сразу на семи параллельных дорожках. Этот принцип и лег в основу хорошо известных накопителей IBM 729, представлявших собой ящик с двумя крутящимися бобинами и намотанной на них лентой длиной 731 метр (их-то и демонстрируют нам в фильмах, когда надо показать компьютер тех времен).

К сожалению, несмотря на то, что пленка в силу своей дешевизны до сих пор используется в некоторых дата-центрах, примерно к восьмидесятым от нее начали отказываться. Главной причиной для этого стало отсутствие произвольного доступа к данным: для того чтобы считать, к примеру, четвертый мегабайт, приходилось пролистать первые три, что очень плохо сказывалось на общем быстродействии. Решение проблемы, как это часто бывает, оказалось под самым носом.

Крутите барабан

Проблему с произвольным доступом решили еще в 1932 году, когда австрийский ученый Густав Таущек придумал хранить данные на специальном запоминающем барабане. Он представлял собой цилиндр, покрытый ферромагнетиком — материалом, умеющим сохранять заданный вектор намагниченности без воздействия внешнего поля.

Помещался этот барабан в емкость со встроенными считывающими головками и скоростным мотором. То есть конструкция была близка к современным HDD, но с одним концептуальным отличием: «иглы» ничего не искали, а ждали, пока нужный бит прокрутится мимо них. Цилиндр вращался на скоростях порядка 12 500 оборотов в минуту, что позволяло быстро получать доступ к информации. Проблема у него была только одна — удерживать он мог жалкие 8,5 КБ и поэтому в основном использовался в качестве оперативки. Впрочем, это не помешало IBM купить все основные патенты на эту разработку и к 1956 году представить первый жесткий диск.

Сделан из стали

В IBM Model 350 использовалось пятьдесят 610-миллиметровых блинов и две огромные считывающие «лапы» — они перемещались вверх/вниз независимо друг от друга. Блоки Model 350 занимали 1,5 квадратных метра, весили около тонны и хранили колоссальные по тем временам 3,75-5 МБ данных. Говорят, IBM могла нарастить емкость и продавать более мощные модели, но маркетологи не знали, кому понадобится столько памяти (по другой версии, не хотели уничтожать перфокарты).

Следующим шагом для IBM стал накопитель «1301», анонсированный в паре с корпоративными машинами 7000-й серии в 1961 году. Новинки задействовали 20 двухсторонних пластин с 250 дорожками. Шпиндель с дисками делал 1800 оборотов в минуту, а пропускная способность аппарата достигала 90 000 символов в секунду. Главным отличием IBM 1301 от предшественников считается использование отдельных головок для каждой стороны магнитного блина: «иглы» плавали очень близко к поверхности и удерживались набегающим потоком воздуха, что давало преимущество в скорости и плотности записи по сравнению с предыдущими моделями.

К слову, позволить себе такую систему хранения могла далеко не каждая компания. Стоимость оборудования равнялась $155 000, что на сегодняшние деньги составляет примерно $1 210 000. Впрочем, варианты были: за $2100 (на данный момент — это около $16 500) можно было арендовать HDD на один месяц.

Не менее важной стала и разработка 1963 года: создавая «компактные» (размером с тумбу) IBM 2311 Direct Access Storage Facility, инженеры впервые ввели такое понятие, как унифицированный разъем. То есть жесткие диски начали продаваться не только в составе вычислительного комплекса, но и как дискретные устройства, что дало нехилый толчок к развитию сторонних компаний.

Еще один подарок индустрия HDD получила в 1973 году — диск IBM «3340». В истории он запомнился не столько своими характеристиками, сколько внутренним названием — «винчестер». Так его окрестили сами создатели, проведя аналогию между двумя 30 МБ пластинами и известной винтовкой Winchester 30-30. Уж не знаем почему, но имя прижилось и активно использовалось примерно до 1990-х годов.

А вот то, что «3340» был первым HDD с возможностью парковать считывающие головки прямо на пластинах, быстро позабыли. А ведь до него на время простоя «лапки» выводились за пределы блока хранения, и это не только сильно усложняло конструкцию, но и снижало ее эффективность.

Компактный мир

Конец 1970-х запомнился появлением первых домашних компьютеров. К сожалению, HDD для них в те времена были непозволительной роскошью и в подавляющем большинстве случаев в качестве постоянных накопителей использовались пленочные кассеты.

Изменилось все в 1980 году, когда компания Shugart Technology, позже переименованная в Seagate, представила 5,25-дюймовый жесткий диск ST-506 емкостью 5 МБ. Размером он был с пару дисководов и к ПК подключался через сторонний контроллер при помощи трех толстенных проводов.

Как ни странно, но в этот раз индустрия не стала тянуть кота за хвост и тут же ухватилась за новую идею. Даже IBM, и та в одной из своих первых по-настоящему популярных домашних систем — PC/XT — использовала модель ST-506.

Ну а спустя всего три года фирма Rodime сумела упаковать 10 МБ пластину и «иглу» в современный 3,5-дюймовый корпус и задать стандарт на следующие тридцать лет, в течении которых производители лишь наращивали плотности записи, скорости чтения/записи и пропускную способность интерфейсов.

Читать еще:  Починка внешнего жесткого диска

Первый накопитель на жестких магнитных дисках

Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

ОЗУ Кэш Процессор»>

В состав внешней памяти компьютера входят:

  • накопители на жёстких магнитных дисках;
  • накопители на гибких магнитных дисках;
  • накопители на компакт-дисках;
  • накопители на магнито-оптических компакт-дисках;
  • накопители на магнитной ленте (стримеры) и др.

1. Накопители на гибких магнитных дисках

Гибкий диск (англ. floppy disk), или лискета, — носитель небольшого объема информации, представляющий собой гибкий пластиковый диск в защитной оболочке. Используется для переноса данных с одного компьютера на другой и для распространения программного обеспечения.


Устройство дискеты

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным окислом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке сделаны с двух сторон радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.

Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавливается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам), которые делятся на секторы. Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.


Рис. 2.7. Поверхность
магнитного диска

В настоящее время наибольшее распространение получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive), автоматически в нем фиксируется, после чего механизм накопителя раскручивается до частоты вращения 360 мин -1 . В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней. Накопитель связан с процессором через контроллер гибких дисков.

В последнее время появились трехдюймовые дискеты, которые могут хранить до 3 Гбайт информации. Они изготовливаются по новой технологии Nano2 и требуют специального оборудования для чтения и записи.

2. Накопители на жестких магнитных дисках

Если гибкие диски — это средство переноса данных между компьютерами, то жесткий диск — информационный склад компьютера.

Накопитель на жёстких магнитных дисках (англ. HDD — Hard Disk Drive) или винчестерский накопитель — это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины — платтеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации — программ и данных.


Рис. 2.8. Винчестерский накопитель
со снятой крышкой корпуса

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки — на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух. Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

Винчестерские накопители имеют очень большую ёмкость: от 10 до 100 Гбайт. У современных моделей скорость вращения шпинделя (вращающего вала) обычно составляет 7200 об/мин, среднее время поиска данных 9 мс, средняя скорость передачи данных до 60 Мбайт/с. В отличие от дискеты, жесткий диск вращается непрерывно. Все современные накопители снабжаются встроенным кэшем (обычно 2 Мбайта), который существенно повышает их производительность. Винчестерский накопитель связан с процессором через контроллер жесткого диска.

3. Накопители на компакт-дисках

Здесь носителем информации является CD-ROM (Сompact Disk Read-Only Memory — компакт диск, из которого можно только читать).

CD-ROM представляет собой прозрачный полимерный диск диаметром 12 см и толщиной 1,2 мм, на одну сторону которого напылен светоотражающий слой алюминия, защищенный от повреждений слоем прозрачного лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.

Информация на диске представляется в виде последовательности впадин (углублений в диске) и выступов (их уровень соответствует поверхности диска), расположеных на спиральной дорожке, выходящей из области вблизи оси диска. На каждом дюйме (2,54 см) по радиусу диска размещается 16 тысяч витков спиральной дорожки. Для сравнения — на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек. Емкость CD достигает 780 Мбайт. Информация наносится на диск при его изготовлении и не может быть изменена.

CD-ROM обладают высокой удельной информационной емкостью, что позволяет создавать на их основе справочные системы и учебные комплексы с большой иллюстративной базой. Один CD по информационной емкости равен почти 500 дискетам. Cчитывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске. CD-ROM просты и удобны в работе, имеют низкую удельную стоимость хранения данных, практически не изнашиваются, не могут быть поражены вирусами, c них невозможно случайно стереть информацию.

В отличие от магнитных дисков, компакт-диски имеют не множество кольцевых дорожек, а одну — спиральную, как у грампластинок. В связи с этим, угловая скорость вращения диска не постоянна. Она линейно уменьшается в процессе продвижения читающей лазерной головки к краю диска.

Рис. 2.9. Накопитель CD-ROM

Для работы с CD-ROM нужно подключить к компьютеру накопитель CD-ROM (рис. 2.9), преобразующий последовательность углублений и выступов на поверхности CD-ROM в последовательность двоичных сигналов. Для этого используется считывающая головка с микролазером и светодиодом. Глубина впадин на поверхности диска равна четверти длины волны лазерного света. Если в двух последовательных тактах считывания информации луч света лазерной головки переходит с выступа на дно впадины или обратно, разность длин путей света в этих тактах меняется на полуволну, что вызывает усиление или ослабление совместно попадающих на светодиод прямого и отраженного от диска света.

Если в последовательных тактах считывания длина пути света не меняется, то и состояние светодиода не меняется. В результате ток через светодиод образует последовательность двоичных электрических сигналов, соответствующих сочетанию впадин и выступов на дорожке.


Профиль дорожки CD-ROM

Различная длина оптического пути луча света в двух последовательных тактах считывания информации соответствует двоичным единицам. Одинаковая длина соответствует двоичным нулям.

Сегодня почти все персональные компьютеры имеют накопитель CD-ROM. Но многие мультимедийные интерактивные программы слишком велики, чтобы поместиться на одном CD. На смену технологии СD-ROM стремительно идет технология цифровых видеодисков DVD. Эти диски имеют тот же размер, что и обычные CD, но вмещают до 17 Гбайт данных, т.е. по объему заменяют 20 стандартных дисков CD-ROM. На таких дисках выпускаются мультимедийные игры и интерактивные видеофильмы отличного качества, позволяющие зрителю просматривать эпизоды под разными углами камеры, выбирать различные варианты окончания картины, знакомиться с биографиями снявшихся актеров, наслаждаться великолепным качеством звука.

4. Записывающие оптические и магнитооптические накопители

· Записывающий накопитель CD-R (Compact Disk Recordable) способен, наряду с прочтением обычных компакт-дисков, записывать информацию на специальные оптические диски емкостью 650 Мбайт. В дисках CD-R отражающий слой выполнен из золотой пленки. Между этим слоем и поликарбонатной основой расположен регистрирующий слой из органического материала, темнеющего при нагревании. В процессе записи лазерный луч нагревает выбранные точки слоя, которые темнеют и перестают пропускать свет к отражающему слою, образуя участки, аналогичные впадинам. Накопители CD-R, благодаря сильному удешевлению, приобретают все большее распространение.

Рис.2.10. Накопитель CD-MO

· Накопитель на магнито-оптических компакт-дисках СD-MO (Compact Disk — Magneto Optical) (рис. 2.10). Диски СD-MO можно многократно использовать для записи. Ёмкость от 128 Мбайт до 2,6 Гбайт.

· Записывающий накопитель CD-R (Compact Disk Recordable) способен, наряду с прочтением обычных компакт-дисков, записывать информацию на специальные оптические диски. Ёмкость 650 Мбайт.

· Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.

5. Накопители на магнитной ленте (стримеры) и накопители на сменных дисках

Стример (англ. tape streamer) — устройство для резервного копирования больших объёмов информации. В качестве носителя здесь применяются кассеты с магнитной лентой ёмкостью 1 — 2 Гбайта и больше.

Рис. 2.11. Накопитель
на сменных дисках

Стримеры позволяют записать на небольшую кассету с магнитной лентой огромное количество информации. Встроенные в стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед её записью и восстанавливать после считывания, что увеличивает объём сохраняемой информации.

Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

В последнее время всё шире используются накопители на сменных дисках, которые позволяют не только увеличивать объём хранимой информации, но и переносить информацию между компьютерами. Объём сменных дисков — от сотен Мбайт до нескольких Гигабайт.

Читать еще:  Подключение второго жесткого диска к ноутбуку

История HDD или кто и как изобрел первый жесткий диск (винчестер)

Как и многие истории появления великих изобретений и технологий, которые благодаря нестандартному мышлению, желанию и настойчивости их изобретателей превратились из идеи в прорывной продукт, история жестких дисков так же не осталась в стороне.

Самый первый жесткий диск появился благодаря обычному школьному учителю Рею Джонсону. В 30-х годах прошлого века он изобрел и сконструировал специальную машину, которая позволяла намного быстрее считывать заполненные учениками тесты. Эту разработку заметила и приобрела компания IBM. Самого талантливого изобретателя компания пригласила на штатную должность инженера.

В январе 1952 года Рею Джонсону предложили открыть небольшую исследовательскую лабораторию, которая занималась бы развитием новых технологий записи, хранения и передачи данных.

Начало создания жесткого диска

Где-то через месяц инженер арендовал на пятилетний срок целое здание в Сан-Хосе. Он уже прекрасно знал, чем будет заниматься и что для этого ему понадобиться. Рей постепенно начал оборудовать лабораторию и искать сотрудников.

Через три месяца под его началом уже трудилось более 30 сотрудников. Они занимались исследованиями и решением различных задач, среди них были такие прорывные проекты для того времени, как попытка создать матричный принтер и специальные часы, которые в автоматическом режиме могли бы фиксировать время прибытия человека на работу и его уход.

Но дальнейшее продолжение история жесткого диска получила благодаря практике использования магнитных систем для хранения информации. Она появилась во время работы с усовершенствованием доступа к информации, записанной на перфокарте.

Изобретатели начали проводить эксперименты с возможными носителями. Это были различной формы и сделанные из различных материалов кольца, стержни, диски, барабаны, провода и многое другое. После проведения множества экспериментов и кучи ошибок лучшим вариантам оказался дисковый магнитный носитель. Он позволял вместить больше данных, а доступ к необходимой информации был простым, благодаря его вращению.

В 1953 году научно-исследовательская лаборатория пополнилась шестью профессиональными инженерами. Они пришли из компании «Макдоннел Дуглас» где создавали систему для автоматической обработки данных.

В этом же году ВВС США сделало заказ на устройство, которое должно было обеспечить хранение картотеки, состоящей из 50 тысяч записей. Самое главное условие, которое выдвинули военные, это мгновенный доступ к любой из записей. В то время инженеры еще не определились с материалами и технологиями, с помощью которых был создан первый винчестер — IBM 350.

Сохранилось упоминание о первой попытке записи и чтения информации с диска. 10 февраля 1954 года к диску подключили перфоратор и записали фразу «This has been a day of solid achievement» («Это был день серьезного успеха»), которую затем считали.

На устранение проблем и решение технических вопросов ушло чуть менее двух лет и 6 мая 1955 года руководство компании IBM сообщило, что в Сан-Хосе в небольшой научно-исследовательской лаборатории была разработана технология хранения данных на магнитных дисках и создан первый рабочий образец (10 января 1955 года).

Представлен IBM 350 Disk Storage Unit

Первый жесткий диск IBM 350 Disk Storage Unit был показан миру 4 сентября 1956 года. Он выглядел, как большой шкаф или холодильник шириной 1,5 м, высотой 1,7 м и толщиной 0,74 м. Его вес составлял 971кг, а стоимость как несколько хороших домов. На его шпинделе размещалось 50 дисков размером 24 дюйма (61 см). Они были покрыты специальной краской, содержащей ферромагнитный материал.

Интересный факт: диски IBM 350 покрывали той же краской, что и мост Золотые ворота в Сан-Франциско. Для равномерного нанесения слоя краски для всех дисков был разработан не обычный метод. В бумажные стаканчики наливали одинаковое количество краски, далее на них надевали шелковые чулки и этим нехитрым, но эффективным способом наносили магнитное покрытие. Данный метод нанесения магнитного слоя просуществовал много лет, пока не был автоматизирован.

5 февраля 1956 года поступил в продажу 1 в мире жесткий диск — IBM 350 Disk Storage Unit.

Диски имели скорость вращения 1200 оборотов в минуту, а общий объем хранимой на них информации был равен 3,5 Мб, просто огромной цифре по тем временам. Привод, на котором крепились считывающие головки, весил почти 1,5 кг, но ему требовалось меньше секунды на то, чтобы переместится от внутренней дорожки верхнего диска до внутренней дорожки нижнего. Представьте себе, насколько быстро должен был двигаться этот совсем не легкий механизм.

Не смотря на все эти кажущиеся для нас недостатки, в то время инженеры IBM 350 считали настоящим техническим прорывом. Один такой диск мог запросто заменить 62,5 тысячи перфокарт. Кроме того, жесткий диск (в последствии названный «винчестером») сильно выигрывал в скорости работы с информацией, ведь чтобы получить доступ к нужным данным пользователям были необходимы доли секунды, в то время как при использовании магнитных перфорированных лент нужно было ждать по несколько минут.

Изобретенный инженерами IBM 350 Disk Storage Unit стал частью ламповой вычислительной системы IBM 305 RAMAC (Random Access Memory Accounting).

Диск IBM 350 в составе компьютера IBM 305 RAMAC

На фотографии изображен первый серийный компьютер IBM 305 RAMAC в составе которого трудился первый жесткий диск IBM 350.

Такие системы, которые уже можно было назвать полноценным компьютером, в 50-х и 60-х годах из-за их ограниченного выпуска и высокой цены работали только в больших корпорациях и правительственных организациях.

Для своего времени это была довольно гибкая и удобная система, которая состояла из процессорного модуля IBM 305, перфоратора IBM 323, принтера IBM 370, консоли IBM 380 (пишущая машинка, механизм ввода перфокарт, клавиатура, световые индикаторы и кнопки управления), блока питания IBM 340 и жесткого диска IBM 350. К концу 1961 года было собрано более тысячи IBM 305 RAMAC, которые стали последними ламповыми системами от IBM.

Все идеи, заложенные в самом первом жестком диске в эпоху ламповых компьютеров, дожили и до сегодняшних дней.

В современных накопителях на магнитных дисках тот же набор из дисков, покрытых ферромагнитным слоем, на которые записываются дорожки с данными. Блок головок чтения и записи, совмещенный с электромеханическим приводом.

Идею считывающих головок, которые за счет потока воздуха, создаваемого вращением самих дисков, поднимаются над его поверхностью, тоже предложили разработчики IBM, а случилось это еще в далеком 1961 году. Да и практически до начала 70-х годов все, что касалось разработки и инноваций в области жестких дисков, так или иначе исходило от лучших умов IBM.

Начало дисковой гонки

В 1979 году один из инженеров принимавший участие в разработке IBM 350 Disk Storage Unit Алан Шугарт, объявил о создании компании Seagate Technology. Так началась история создания жесткого диска, как массового продукта.

В этом же году Seagate создала первый диск форм-фактора 5,25″ ST-506 объемом 5 Мб, и год спустя запустила его в производство. Чуть менее чем через год была выпущена модель ST-412 объемом 10 Мб. Именно эти модели дисков использовались в популярных персональных компьютерах IBM PC/XT и IBM PC/AT.

Western Digital была основана в 1970 году и на момент основания называлась General Digital Corporation (ее переименовали в 1971 году). WD занималась производством различной электроники и однокристальных контроллеров. Именно Western Digital в 1981 году сделала первый контроллер (WD1010) для массовых жестких дисков Seagate ST-506 и ST-412. Тогда они были партнерами, но на сегодняшний день Western Digital является основным конкурентом Seagate Technology.

Несколько лет WD участвовала в совместной разработке стандарта АТА. Так же занималась разработкой электроники для SCSI- и АТА-дисков. В 1988 году приобрела дисковое подразделение Tandon Corporation и в 1990 году выпустила собственные жесткие диски серии Caviar.

С 1985 по 2005 год произошел настоящий бум дискового производства. В этот период появилось огромное количество компаний, основная часть которых к настоящему времени либо вошла в состав основных гигантов Seagate и Western Digital, либо просто перестала существовать.

Можно вспомнить такие хорошо известные бренды производителей жестких дисков и запчастей к ним – Conner, Fuji, Quantum, Maxtor, Fujitsu. Все они зарекомендовали себя как производители надежной техники и так или иначе принимали участие в гонке производства дисков, стартовавшей в тот момент, когда винчестер стал неотъемлемой частью ПК.

На сегодняшний день популярность жестких магнитных дисков велика, и их доля в современных системах хранения данных занимает подавляющее большинство. Но в настоящее время мы можем наблюдать, как происходит переход к более современным способам хранения и передачи данных. Все большую популярность набирают SSD диски. Высокая скорость чтения и записи, низкое энергопотребление (тепловыделение), высокая устойчивость к механическим нагрузкам, небольшой вес и размер – все говорит в пользу того, что жесткие диски, которые мы знаем сейчас, скоро уйдут в прошлое. Возможно останутся только устройства с очень большими объемами, с которыми будет трудно конкурировать различным флешкам и твердотельным накопителям в цене за 1 Гигабайт.

Я думаю, что когда цены за 1 Гигабайт на SSD накопителях будут стоить в два раза и меньше, чем на обычных дисках, то это будет означать смерь винчестеров, по крайней мере для массового рынка. В таких условиях все преимущества твердотельных дисков будут играть решающую роль при выборе устройства хранения информации, несмотря на более высокую цену.


Ссылка на основную публикацию
Adblock
detector