Tooprogram.ru

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Функция линейн в excel

Глава 22. Функция массива ЛИНЕЙН

Это глава из книги: Майкл Гирвин. Ctrl+Shift+Enter. Освоение формул массива в Excel.

Функция ЛИНЕЙН рассчитывает статистику для ряда с применением метода наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные и затем возвращает массив, который описывает полученную прямую. Функция ЛИНЕЙН может также возвращать дополнительную регрессионную статистику (подробнее см. справку MS Excel).

Рис. 22.1. Четыре аргумента функции ЛИНЕЙН

Скачать заметку в формате Word или pdf, примеры в формате Excel

Линейная регрессия

На рис. 22.2 показан набор данных (он уже анализировался в главе 9, когда мы обсуждали функции НАКЛОН, ОТРЕЗОК, ПРЕДСКАЗ и ТЕНДЕНЦИЯ). Поскольку ЛИНЕЙН является функцией массива и вы хотите, чтобы она вернула два значения, выполните следующие действия:

  1. Выделите диапазон D2:Е2. Функция ЛИНЕЙН возвращает массив из двух значений, расположенных по горизонтали, но не по вертикали.
  2. Введите известные значения y. Это – баллы, которые студенты заработали на последнем тестировании.
  3. Введите известные значения х. Это количество часов, которые студенты потратили на подготовку к тестам.
  4. Опустите аргумент [конст].
  5. Опустите аргумент [статистика].
  6. Введите формулу с помощью Ctrl+Shift+Enter.

Рис. 22.2. Функция ЛИНЕЙН возвращает наклон и отрезок, если массив расположен в горизонтальном диапазоне

Рис. 22.3. Функция массива ЛИНЕЙН заменяет две отдельные функции – НАКЛОН и ОТРЕЗОК

Если вам всё же нужно вывести результаты функции ЛИНЕЙН в вертикальный массив, воспользуйтесь ухищрением (рис. 22.4).

Рис. 22.4. Формулы для вывода результатов в вертикальный массив

Если вы хотите отобразить не только наклон и отрезок, но и дополнительные статистики, выделите диапазон на один столбец больше, чем столбцов с переменными х, и высотой 5 строк. Как показано на рис. 22.5, поскольку у вас лишь одна переменная х, выделите диапазон Е2:F6 (2 столбца по 5 строк). Третьему и четвертому аргументам присвойте значения ИСТИНА: вы хотите, чтобы b считалось обычным образом, и хотите вывести дополнительные статистики. После ввода формулы нажатием Ctrl+Shift+Enter, результат должен соответствовать рис. 22.6 (подробнее о десяти статистиках см. Простая линейная регрессия).

Рис. 22.5. Когда требуется дополнительная статистика для одной переменной, выделите диапазон 2*5; функция ЛИНЕЙН вернет 10 значений; чтобы увеличить изображение кликните на нем правой кнопкой мыши и выберите Открыть картинку в новой вкладке

Рис. 22.6. Функция ЛИНЕЙН возвращает 10 статистик

В главе 8 было показано, как с помощью формулы преобразовать таблицу в столбец. На рис. 22.7 приведена формула, позволяющая представить результаты работы функции ЛИНЕЙН (которые она возвращает в диапазон 2*5) в вертикальном столбце.

Следующие элементы являются аргументами функции ИНДЕКС:

  • аргумент массив: функция ЛИНЕЙН($B$2:$B$12;$A$2:$A$12;ИСТИНА;ИСТИНА) возвращает диапазон из пяти строк и двух столбцов.
  • аргумент номер_строки: ОСТАТ(ЧСТРОК(E$1:E1)-1;5)+1 возвращает следующие значения 1,2,3,4,5,1,2,3,4,5 при копировании формулы вдоль столбца от Е1 до Е10.
  • аргумент номер_столбца: ЦЕЛОЕ((ЧСТРОК(E$1:E1)-1)/5)+1 возвращает 1,1,1,1,1,2,2,2,2,2 при копировании формулы вдоль столбца от Е1 до Е10.

Рис. 22.7. Преобразование диапазона вывода формулы ЛИНЕЙН из 2*5 в вертикальный

Формула в Е1 не требует ввода с помощью Ctrl+Shift+Enter.

Множественная регрессия

В случае множественной регресии, когда значения y зависят от двух переменных х1 и х2, функция ЛИНЕЙН возвращает 12 статистик (подробнее см. Введение в множественную регрессию и Построение модели множественной регрессии). На рис. 22.8 используются следующие обозначения:

  • y = зависимая переменная
  • x1 = независимая переменная 1 = баллы за домашнее задание
  • x2 = независимая переменная 2 = часов изучал последний столбец тест = гр.

Чтобы выполнить множественную регрессию:

  • Выделите диапазон В3:D7 (число столобцов = число переменных +1; число строк всегда равно 5).
  • Наберите формулу <=ЛИНЕЙН(D13:D23;B13:C23;ИСТИНА;ИСТИНА)>. Для аргумента известные_значения_х, выделите оба столбца значений x из диапазона В13:С23.
  • Введите функцию с помощью клавиш Ctrl+Shift+Enter.
  • Обратите внимание, что несмотря на то, что значения х1 указаны в диапазоне В13:С23 до значений х2, наклон сначала указан для х2.

Рис. 22.8. Для двух переменных x1 и х2 функция ЛИНЕЙН выполняет множественную регрессию

Если вас раздражают знаяения ошибки #Н/Д дополните вашу формулу функцией ЕСЛИОШИБКА (рис. 22.9).

Рис. 22.9. Вы можете избавиться от ошибок #Н/Д «обернув» ЛИНЕЙН функцией ЕСЛИОШИБКА

Пример с тремя переменными не должен вызвать затруднений (рис. 22.10).

Рис. 22.10. Множественная регрессия для трех независимых переменных

2 комментария для “Глава 22. Функция массива ЛИНЕЙН”

Добрый день!
У меня следующая ситуация: значения двух независимых переменных x1 и x2 содержаться на разных листах. Перенести их на один лист не получается, потому что наборов данных несколько сотен и делать для каждого набора отдельную вкладку — не вариант. Можно ли как-то обойти требование что x1 и x2 должны содержаться в едином диапазоне?

Функция EXCEL ЛИНЕЙН()

Функция ЛИНЕЙН() специально создана для оценки параметров линейной регрессии, а также для вывода регрессионной статистики (коэффициента детерминации, стандартных ошибок, F -статистики и др.).

Функция ЛИНЕЙН() может использоваться для простой регрессии (в этом случае прогнозируемая переменная Y зависит от одной контролируемой переменной Х) и для множественной регрессии (Y зависит от нескольких Х).

Рассмотрим функцию на примере простой регрессии (оценивается наклон и сдвиг линии регрессии). Использование функции в случае множественной регрессии рассмотрено в соответствующей статье про множественную регрессию .

Функция ЛИНЕЙН() возвращает несколько значений, поэтому для вывода результатов потребуется несколько ячеек. Часто функцию вводят как формулу массива : нажатием клавиш CTRL + SHIFT + ENTER , но, как будет показано ниже, для вывода результатов вычислений это не обязательно.

Функция работает в 2-х режимах. В простейшем случае, когда 4-й аргумент функции опущен или установлен ЛОЖЬ, функция возвращает только 2 значения — это оценки параметров модели: наклона a и сдвига b.

Для того, чтобы вычислить оценки:

  • выделите 2 ячейки в одной строке,
  • в Строке формул введите, например, = ЛИНЕЙН(C23:C83;B23:B83)
  • нажмите CTRL+SHIFT+ENTER.

В левой ячейке будет рассчитано значение наклона , в правой – сдвига .

Примечание : В справке MS EXCEL результат функции ЛИНЕЙН() соответствующий наклону обозначается буквой m, а сдвиг – буквой b.

Примечание : Без формул массива можно обойтись. Для этого нужно использовать функцию ИНДЕКС() , которая выведет нужное значение. Например, чтобы вывести величину сдвига линии регрессии введите формулу = ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);1;2) . Если 4-й аргумент функции опущен или установлен ЛОЖЬ, то функция ЛИНЕЙН() в возвращает массив значений вида 1х2 (т.е. 2 ячейки, расположенные в одной строке). Поэтому, для вывода величины сдвига прямой линии регрессии, первый аргумент функции ИНДЕКС() , который является номером строки, должен быть равен 1, а второй аргумент, номер столбца, должен быть равен 2. Чтобы вывести значение наклона линии регрессии формулу =ЛИНЕЙН(C23:C83;B23:B83) достаточно ввести просто как обычную формулу и нажать ENTER . Конечно, можно использовать и формулу =ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);1;1) .

Теперь о втором, более сложном режиме функции. Этот режим нужно использовать, если требуется вывести дополнительную статистику (4-й аргумент функции должен быть установлен ИСТИНА). В этом случае функция ЛИНЕЙН() возвращает 10 значений в диапазоне 5х2 ячеек (5 строк и 2 столбца). Как и в более простом режиме, в первой строке возвращаются оценки параметров модели: наклона и сдвига .

Чтобы ввести функцию как формулу массива выполните следующие действия:

  • выделите диапазон 5х2 ячеек (2 столбца и 5 строк),
  • в Строке формул введите формулу ЛИНЕЙН($C$23:$C$83;$B$23:$B$83;;ИСТИНА)
  • чтобы ввести формулу нажмите одновременно комбинацию клавиш CTRL + SHIFT + ENTER

Примечание : Чтобы обойтись без формул массива нужно использовать функцию ИНДЕКС() , которая выведет нужное значение. Например, чтобы вывести коэффициент детерминации R 2 введите формулу = ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);3;1) . 3 – это номер строки диапазона 5х2, а 1 – это номер столбца. В файле примера на листе Линейный в диапазоне Q 26: R 30 показано как вывести все значения, возвращаемые функцией ЛИНЕЙН() без формул массива .

Итак, установив 4-й аргумент равным ИСТИНА и введя функцию тем или иным способом, функция выведет:

  • в строке 1: оценки параметров модели (наклон и сдвиг).
  • в строке 2: Стандартные ошибки для наклона и сдвига . Ошибки обозначаются se и seb;
  • в строке 3: коэффициент детерминации и стандартную ошибку регрессии . Обозначаются R 2 и SEy;
  • в строке 4: значение F-статистики и число степеней свободы . Обозначаются F и df;
  • в строке 5: Суммы квадратов SSR, SSE определяющие изменчивость объясненную и необъясненную моделью (см. в статье Простая линейная регрессия разделы про коэффициент детерминации и статью про F-тест ). В справке MS EXCEL SSR, SSE обозначаются как ssreg (Regression Sum of Squares) и ssresid (Residuals Sum of Squares) соответственно.

Примечание : Разобраться в значениях, возвращаемых функцией ЛИНЕЙН() , можно лишь разобравшись в теории линейной регрессии.

В файле примера также приведены формулы, позволяющие сделать расчеты без функции ЛИНЕЙН() – см. диапазон Q 34: R 38 . Альтернативные формулы помогают разобраться в алгоритме расчета вышеуказанных статистических показателей.

ЛИНЕЙН (функция ЛИНЕЙН)

В этой статье описаны синтаксис формулы и использование функции ЛИНЕЙН в Microsoft Excel. Ссылки на дополнительные сведения о диаграммах и выполнении регрессионного анализа в разделе » см .

Описание

Функция ЛИНЕЙН рассчитывает статистику для ряда с применением метода наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные и затем возвращает массив, который описывает полученную прямую. Функцию ЛИНЕЙН также можно объединять с другими функциями для вычисления других видов моделей, являющихся линейными по неизвестным параметрам, включая полиномиальные, логарифмические, экспоненциальные и степенные ряды. Поскольку возвращается массив значений, функция должна задаваться в виде формулы массива. Инструкции приведены в данной статье после примеров.

Уравнение для прямой линии имеет следующий вид:

y = m1x1 + m2x2 +. + b

если существует несколько диапазонов значений x, где зависимые значения y — функции независимых значений x. Значения m — коэффициенты, соответствующие каждому значению x, а b — постоянная. Обратите внимание, что y, x и m могут быть векторами. Функция ЛИНЕЙН возвращает массив . Функция ЛИНЕЙН может также возвращать дополнительную регрессионную статистику.

Синтаксис

ЛИНЕЙН(известные_значения_y; [известные_значения_x]; [конст]; [статистика])

Аргументы функции ЛИНЕЙН описаны ниже.

Синтаксис

Известные_значения_y. Обязательный аргумент. Множество значений y, которые уже известны для соотношения y = mx + b.

Если массив известные_значения_y имеет один столбец, то каждый столбец массива известные_значения_x интерпретируется как отдельная переменная.

Если массив известные_значения_y имеет одну строку, то каждая строка массива известные_значения_x интерпретируется как отдельная переменная.

Известные_значения_x. Необязательный аргумент. Множество значений x, которые уже известны для соотношения y = mx + b.

Массив известные_значения_x может содержать одно или несколько множеств переменных. Если используется только одна переменная, то массивы известные_значения_y и известные_значения_x могут иметь любую форму — при условии, что они имеют одинаковую размерность. Если используется более одной переменной, то известные_значения_y должны быть вектором (т. е. интервалом высотой в одну строку или шириной в один столбец).

Если массив известные_значения_x опущен, то предполагается, что это массив <1;2;3;. >, имеющий такой же размер, что и массив известные_значения_y.

Конст. Необязательный аргумент. Логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0.

Если аргумент конст имеет значение ИСТИНА или опущен, то константа b вычисляется обычным образом.

Если аргумент конст имеет значение ЛОЖЬ, то значение b полагается равным 0 и значения m подбираются таким образом, чтобы выполнялось соотношение y = mx.

Статистика. Необязательный аргумент. Логическое значение, которое указывает, требуется ли возвратить дополнительную регрессионную статистику.

Если значение аргумента Статистика истинно, функция ЛИНЕЙН возвращает дополнительную статистику по регрессии; в результате возвращаемый массив имеет значение .

Если аргумент статистика имеет значение ЛОЖЬ или опущен, функция ЛИНЕЙН возвращает только коэффициенты m и постоянную b.

Дополнительная регрессионная статистика.

Стандартные значения ошибок для коэффициентов m1,m2. mn.

Стандартное значение ошибки для постоянной b (seb = #Н/Д, если аргумент конст имеет значение ЛОЖЬ).

Коэффициент определения. Сравнивает предполагаемые и фактические значения y и диапазоны значений от 0 до 1. Если это 1, то в примере есть идеальная корреляция — разница между предполагаемыми значениями y и фактическим значением y отсутствует. С другой стороны, если коэффициент определения равен 0, уравнение регрессии не может быть полезным для предсказания значения y. Сведения о том, как вычисляется 2 , приведены в разделе «Примечания» ниже.

Стандартная ошибка для оценки y.

F-статистика или F-наблюдаемое значение. F-статистика используется для определения того, является ли случайной наблюдаемая взаимосвязь между зависимой и независимой переменными.

Степени свободы. Степени свободы используются для нахождения F-критических значений в статистической таблице. Для определения уровня надежности модели необходимо сравнить значения в таблице с F-статистикой, возвращаемой функцией ЛИНЕЙН. Дополнительные сведения о вычислении величины df см. ниже в разделе «Замечания». Далее в примере 4 показано использование величин F и df.

Регрессионная сумма квадратов.

Остаточная сумма квадратов. Дополнительные сведения о расчете величин ssreg и ssresid см. в подразделе «Замечания» в конце данного раздела.

На приведенном ниже рисунке показано, в каком порядке возвращается дополнительная регрессионная статистика.

Замечания

Любую прямую можно описать ее наклоном и пересечением с осью y:

Наклон (м):
Чтобы найти наклон линии, часто записывается как m, выведите две точки в линии (x1, y1) и (x2, Y2); наклон равен (Y2-Y1)/(x2-x1).

Пересечение с осью Y (b
): Пересечением y строки, часто написанным как b, является значение y в точке, где линия пересекает ось y.

Уравнение прямой имеет вид y = mx + b. Если известны значения m и b, то можно вычислить любую точку на прямой, подставляя значения y или x в уравнение. Можно также воспользоваться функцией ТЕНДЕНЦИЯ.

Если имеется только одна независимая переменная x, можно получить наклон и y-пересечение непосредственно, воспользовавшись следующими формулами:

Наклон:
= INDEX (ЛИНЕЙН (known_y, known_x), 1)

Пересечение с осью
Y: = INDEX (ЛИНЕЙН (known_y, known_x); 2)

Точность аппроксимации с помощью прямой, вычисленной функцией ЛИНЕЙН, зависит от степени разброса данных. Чем ближе данные к прямой, тем более точной является модель ЛИНЕЙН. Функция ЛИНЕЙН использует для определения наилучшей аппроксимации данных метод наименьших квадратов. Когда имеется только одна независимая переменная x, значения m и b вычисляются по следующим формулам:

где x и y — выборочные средние значения, например x = СРЗНАЧ(известные_значения_x), а y = СРЗНАЧ( известные_значения_y ).

Функции «линейный» и «кривая» ЛИНЕЙН и ЛИНЕЙН могут вычислять подходящую прямую линейную или экспоненциальную кривую, подходящую для данных. Тем не менее, вам нужно решить, какой из двух результатов лучше подходит для ваших данных. Можно вычислить тенденции ( known_y, known_x ) для прямой линии или роста ( known_y , known_x ) для экспоненциальной кривой. Эти функции без аргумента new_x возвращают массив значений y, прогнозируемых вдоль данной линии или кривой на реальных точках данных. Затем вы можете сравнить прогнозируемые значения с фактическими значениями. Вы можете попытаться создать диаграмму для визуального сравнения.

Проводя регрессионный анализ, Microsoft Excel вычисляет для каждой точки квадрат разности между прогнозируемым значением y и фактическим значением y. Сумма этих квадратов разностей называется остаточной суммой квадратов (ssres > конст = ИСТИНА или значение этого аргумента не указано, общая сумма квадратов будет равна сумме квадратов разностей действительных значений y и средних значений y. При конст = ЛОЖЬ общая сумма квадратов будет равна сумме квадратов действительных значений y (без вычитания среднего значения y из частного значения y). После этого регрессионную сумму квадратов можно вычислить следующим образом: ssreg = sstotal — ssres >2 ), который является индикатором того, насколько точно в результате регрессионного анализа объясняется связь между переменными. Значение r 2 равно ссрег/сстотал.

В некоторых случаях один или несколько столбцов X (допускает наличие столбцов Y и X) могут не иметь дополнительного прогнозируемого значения в других столбцах X. Другими словами, удаление одного или нескольких столбцов X может привести к прогнозируемым значениям Y, которые являются одинаково точными. В таком случае эти избыточные столбцы X должны быть опущены в модели регрессии. Это явление называется «коллинеарностй», так как любой избыточный столбец X можно выразить как сумму кратных столбцов X, не являющихся избыточными. Функция ЛИНЕЙН проверяет наличие коллинеарности и удаляет избыточные столбцы X из модели регрессии при их идентификации. Удаленные столбцы X могут быть распознаны в выходных данных ЛИНЕЙН , так как они имеют нулевые коэффициенты в дополнение к значениям 0 SE. Если один или несколько столбцов удалены как избыточные, значение DF будет затронуто, так как DF зависит от количества столбцов X, которые фактически используются для целей прогнозирования. Подробнее о вычислении DF можно найти в разделе Пример 4. Если значение DF изменилось из-за того, что удаляются столбцы с избыточными X, также повлияют значения Сэй и F. Коллинеарность на практике должен быть сравнительно редкой. Тем не менее, если некоторые из столбцов X содержат только значения 0 и 1, в том числе индикаторов того, является ли тема в эксперименте или не входит в состав определенной группы. Если аргумент » Конст » имеет значение истина или опущен, функция ЛИНЕЙН фактически вставляет дополнительный столбец X для всех значений 1, чтобы смоделировать функцию «конст». Если у вас есть столбец с 1 для каждой темы, если это не так, а у тебя есть столбец с 1 по каждой тематике или 0 в противном случае, то этот последний столбец является избыточным, так как записи в нем можно получить, так как они могут быть получены от вычитания записи в столбце «индикатор со значением» в дополнительном столбце, который содержит все значения 1, добавленные функцией ЛИНЕЙН .

Вычисление значения df для случаев, когда столбцы X удаляются из модели вследствие коллинеарности происходит следующим образом: если существует k столбцов известных_значений_x и значение конст = ИСТИНА или не указано, то df = n – k – 1. Если конст = ЛОЖЬ, то df = n — k. В обоих случаях удаление столбцов X вследствие коллинеарности увеличивает значение df на 1.

При вводе константы массива (например, в качестве аргумента известные_значения_x) следует использовать точку с запятой для разделения значений в одной строке и двоеточие для разделения строк. Знаки-разделители могут быть другими в зависимости от региональных параметров.

Следует отметить, что значения y, предсказанные с помощью уравнения регрессии, возможно, не будут правильными, если они располагаются вне интервала значений y, которые использовались для определения уравнения.

Основной алгоритм, используемый в функции ЛИНЕЙН, отличается от основного алгоритма функций НАКЛОН и ОТРЕЗОК. Разница между алгоритмами может привести к различным результатам при неопределенных и коллинеарных данных. Например, если точки данных аргумента известные_значения_y равны 0, а точки данных аргумента известные_значения_x равны 1, то:

Функция ЛИНЕЙН возвращает значение, равное 0. Алгоритм функции ЛИНЕЙН используется для возвращения подходящих значений для коллинеарных данных, и в данном случае может быть найден по меньшей мере один ответ.

Наклон и конст возвращают #DIV/0! Если позиция, которую вы указали, находится перед первым или после последнего элемента в поле, формула возвращает ошибку #ССЫЛКА!. Алгоритмы наклона и перехвата предназначены для поиска только одного ответа, и в этом случае может быть несколько ответов.

Помимо вычисления статистики для других типов регрессии с помощью функции ЛГРФПРИБЛ, для вычисления диапазонов некоторых других типов регрессий можно использовать функцию ЛИНЕЙН, вводя функции переменных x и y как ряды переменных х и у для ЛИНЕЙН. Например, следующая формула:

работает при наличии одного столбца значений Y и одного столбца значений Х для вычисления аппроксимации куба (многочлен 3-й степени) следующей формы:

y = m1*x + m2*x^2 + m3*x^3 + b

Формула может быть изменена для расчетов других типов регрессии, но в отдельных случаях требуется корректировка выходных значений и других статистических данных.

Значение F-теста, возвращаемое функцией ЛИНЕЙН, отличается от значения, возвращаемого функцией ФТЕСТ. Функция ЛИНЕЙН возвращает F-статистику, в то время как ФТЕСТ возвращает вероятность.

Примеры

Пример 1. Наклон и Y-пересечение

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

5 способов расчета значений линейного тренда в MS Excel

Это первая статья из серии «Как самостоятельно рассчитать прогноз продаж с учетом роста и сезонности», из которой вы узнаете о 5 способах расчета значений линейного тренда в Excel.

Для того, чтобы легче было научиться прогнозировать продажи с учетом роста и сезонности, я разбил 1 большую статью о расчете прогноза на 3 части:

    1. Расчет значений тренда (рассмотрим на примере Линейного тренда в этой статье);
    2. Расчет сезонности;
    3. Расчет прогноза;

После изучения данного материала вы сможете выбрать оптимальный способ расчета значений линейного тренда, который будет удобен для решения вашей задачи, а в последствии, и для расчета прогноза наиболее удобным для вас способом.

Линейный тренд хорошо применять для временного ряда, данные которого увеличиваются или убывают с постоянной скоростью.

Рассмотрим линейный тренд на примере расчета прогноза продаж в Excel по месяцам.

Временной ряд продажи по месяцам (см. вложенный файл).

В этом временном ряду у нас есть 2 переменных:

Уравнение линейного тренда y(x)=a+bx, где

y — это объёмы продаж

x — номер периода (порядковый номер месяца)

a – точка пересечения с осью y на графике (минимальный уровень);

b – это значение, на которое увеличивается следующее значение временного ряда;

1-й способ расчета значений линейного тренда в Excel с помощью графика

Выделяем анализируемый объём продаж и строим график, где по оси Х — наш временной ряд (1, 2, 3… — январь, февраль, март …), по оси У — объёмы продаж. Добавляем линию тренда и уравнение тренда на график. Получаем уравнение тренда y=135134x+4594044

Для прогнозирования нам необходимо рассчитать значения линейного тренда, как для анализируемых значений, так и для будущих периодов.

При расчете значений линейного тренде нам будут известны:

  1. Время — значение по оси Х;
  2. Значение «a» и «b» уравнения линейного тренда y(x)=a+bx;

Рассчитываем значения тренда для каждого периода времени от 1 до 25, а также для будущих периодов с 26 месяца до 36.

Например, для 26 месяца значение тренда рассчитывается по следующей схеме: в уравнение подставляем x=26 и получаем y=135134*26+4594044=8107551

27-го y=135134*27+4594044=8242686

2-й способ расчета значений линейного тренда в Excel — функция ЛИНЕЙН

1. Рассчитаем коэффициенты линейного тренда с помощью стандартной функции Excel:

=ЛИНЕЙН(известные значения y, известные значения x, константа, статистика)

Для расчета коэффициентов в формулу вводим

известные значения y (объёмы продаж за периоды),

известные значения x (номера периодов),

вместо константы ставим 1,

вместо статистики 0,

Получаем 135135 — значение (b) линейного тренда y=a+bx;

Для того чтобы Excel рассчитал сразу 2 коэффициента (a) и (b) линейного тренда y=a+bx, необходимо

    1. установить курсор в ячейку с формулой и выделить соседнюю справа, как на рисунке;
    2. нажимаем клавишу F2, а затем одновременно — клавиши CTRL + SHIFT + ВВОД.

Получаем 135135, 4594044 — значение (b) и (a) линейного тренда y=a+bx;

2. Рассчитаем значения линейного тренда с помощью полученных коэффициентов . Подставляем в уравнение y=135134*x+4594044 номера периодов — x, для которых хотим рассчитать значения линейного тренда.

2-й способ точнее, чем первый, т.к. коэффициенты тренда мы получаем без округления, а также быстрее.

3-й способ расчета значений линейного тренда в Excel — функция ТЕНДЕНЦИЯ

Рассчитаем значения линейного тренда с помощью стандартной функции Excel:

=ТЕНДЕНЦИЯ(известные значения y; известные значения x; новые значения x; конста)

Подставляем в формулу

  1. известные значения y — это объёмы продаж за анализируемый период (фиксируем диапазон в формуле, выделяем ссылку и нажимаем F4);
  2. известные значения x — это номера периодов x для известных значений объёмов продаж y;
  3. новые значения x — это номера периодов, для которых мы хотим рассчитать значения линейного тренда;
  4. константа — ставим 1, необходимо для того, чтобы значения тренда рассчитывались с учетом коэффицента (a) для линейного тренда y=a+bx;

Для того чтобы рассчитать значения тренда для всего временного диапазона, в «новые значения x» вводим диапазон значений X, выделяем диапазон ячеек равный диапазону со значениями X с формулой в первой ячейке и нажимаем клавишу F2, а затем — клавиши CTRL + SHIFT + ВВОД.

4-й способ расчета значений линейного тренда в Excel — функция ПРЕДСКАЗ

Рассчитаем значения линейного тренда с помощью стандартной функции Excel:

=ПРЕДСКАЗ(x; известные значения y; известные значения x)

Вместо X поставляем номер периода, для которого рассчитываем значение тренда.

Вместо «известные значения y» — объёмы продаж за анализируемый период (фиксируем диапазон в формуле, выделяем ссылку и нажимаем F4);

«известные значения x» — это номера периодов для каждого выделенного объёма продаж.

3-й и 4-й способ расчета значений линейного тренда быстрее, чем 1 и 2-й, однако с его помощью невозможно управлять коэффициентами тренда, как описано в статье «О линейном тренде».

5-й способ расчета значений линейного тренда в Excel — Forecast4AC PRO

2. Заходим в меню программы и нажимаем «Start_Forecast». Значения линейного тренда рассчитаны.

Для расчета прогноза осталось применить к значениям трендов будущих периодов коэффициенты сезонности, и прогноз продаж с учетом роста и сезонности готов.

В следующих статье «Как самостоятельно сделать прогноз продаж с учетом роста и сезонности» мы:

О том, что еще важно знать о линейном тренде, вы можете узнать в статье «Что важно знать о линейном тренде».

Точных вам прогнозов!

Присоединяйтесь к нам!

Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа:

  • Novo Forecast Lite — автоматический расчет прогноза в Excel .
  • 4analytics — ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition — BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

  • Novo Forecast PRO — прогнозирование в Excel для больших массивов данных.

Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

Читать еще:  Wordart где находится в ворде 2020
Ссылка на основную публикацию
Adblock
detector