Tooprogram.ru

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Единица си крутизны фронта импульса

Импульс. RC и RL цепи

Всем доброго времени суток. Сегодняшний мой пост начинает серию статей про импульсные устройства. Такие устройства предназначены для формирования и преобразования электрических сигналов, имеющих характер импульсов и перепадов напряжений. К импульсным устройствам относятся все цифровые микросхемы и некоторые аналоговые, например, микросхемы генераторов и компараторов. Ранее я рассматривал один из основных элементов импульсных устройств – транзистор, работающий в ключевом режиме.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.


Формы импульса (слева направо): прямоугольная, трапецеидальная, пилообразная, экспоненциальная.

В радиоэлектронике используются импульсы самых разнообразных форм, но наиболее распространённые это: прямоугольные, трапецеидальные, пилообразные и экспоненциальные формы импульсов. Форма любого импульса характеризуется следующими основными параметрами:

  • амплитуда (максимальное значение) импульса, Um;
  • начальное значение импульса, U;
  • длительность импульса, tи;
  • длительность переднего фронта (или просто фронта) импульса, tф;
  • длительность заднего фронта (или среза) импульса, tс;
  • длительность вершины импульса, tв;
  • снижение вершины импульса, Δu;
  • крутизна фронта импульса (скорость изменения напряжения при формировании переднего или заднего фронта).

В случае использовании периодичности повторяющихся импульсов имеют большое значение такие параметры, как скважность импульсов (ξ или S), коэффициент заполнения импульсов (η или D), частота повторения импульсов (f) и период повторения импульсов (T). Данные параметры имеют следующие соотношения между собой


Форма реального импульса

Временные параметры импульса (tи, tф, tс, tв) имеют точное значение только в случае идеального импульса, а в реальности лишь в некоторой степени имеют приближённое значение. Поэтому временные параметры отсчитываются от некоторых приближённых величин, которые в достаточной для практики точности имеют значения 0,05 и 0,95. Поясню на примере формы реального импульса, изображённого выше: при определении длительности фронта (tф) импульса, за начало фронта принимают значение 0,05*Um, а за окончание фронта – 0,95*Um. В случае длительности среза, соответственно, начало – 0,95*Um, а окончание – 0,05*Um.

Переходный процесс

Рассмотрение импульсных устройств и схем не возможно без представлении о переходном процессе. Он возникает в цепях при различных коммутациях, то есть при включении или выключении элементов схемы, источников напряжения, при коротких замыканиях отдельных цепей и т.д. Переходный процесс объясняется тем, что энергия электромагнитных полей, связанных с цепью, в разные промежутки времени неодинакова, а резкое изменение энергии невозможно из-за ограниченной мощности источников питания.

Исходя из вышесказанного, можно сделать вывод, что напряжение на ёмкости и ток в индуктивность не могут изменяться скачкообразно, так как данные параметры определяют энергию электрического поля конденсатора и магнитного поля катушки индуктивности.

Таким образом, можно сделать вывод, что при рассмотрении импульсных схем наибольшее внимание необходимо обратить на цепи, представляющие собой комбинации резисторов и конденсаторов или резисторов и катушек индуктивностей (RC- и RL-цепей). Такие цепи применяются непосредственно для формирования импульсов, а также являются важнейшими элементами релаксационных генераторов, триггеров и других устройств. Поэтому ниже рассмотрим основные свойства элементарных RC- и RL-цепей, а также изменение формы импульсов при прохождении через эти цепи.

Влияние RC- и RL-цепей на импульсы различной формы

Несмотря на то, что формы электрических импульсов довольно разнообразны, их можно представить в виде суммы элементарных (типовых) напряжений трёх форм: скачкообразного, линейно изменяющегося и экспоненциального. Поэтому рассмотрим воздействие различных форм напряжений на RC- и RL-цепи.


Изображение RC- и RL-цепей.


Элементарные формы напряжения (сверху вниз): ступенчатое, линейно-изменяющееся, экспоненциальное.

Ступенчатое изменение напряжения. При подключении RC-цепи к источнику постоянного напряжения uвх = Е = const, напряжения на конденсаторе и резисторе будет изменяться по экспоненциальному закону:

где е – математическая постоянная, е = 2,72;
t – время, с;
τ – постоянная времени, с. τ = RC.

С определением напряжения всё понятно, но в практике чаще возникает вопрос о времени установления напряжения. Например, необходимо вычислить время за которое на конденсаторе установится напряжение равное uС = 0,95 Е. Простым преобразованием формулы напряжения получим

[math]t=- tau ln(1 — frac>)[/math]
[math]t=- tau ln(1 — frac<0,95E>)=- tau ln(0,05) approx 3 tau[/math]

Аналогично при подключении RL-цепи к источнику постоянного напряжения uвх = Е = const

где τ – постоянная времени, с. τ = L/R.

Линейно изменяющееся напряжение. При подключении RC-цепи к источнику линейно изменяющегося напряжения uВХ = kt, напряжения на резисторе и конденсаторе будут изменяться согласно следующей формуле

Для RL-цепи подключённой к источнику с линейно изменяющимся напряжением uВХ = kt, напряжения на элементах соответственно будут такими

[math]u_=kt — k tau (1 — e^<- frac>)[/math]
[math]u_=k tau (1 — e^<- frac>)[/math]


Временные диаграммы напряжений при линейно изменяющемся напряжении в RC- и RL-цепях.

Экспоненциально изменяющееся напряжение. При подключении RC-цепи к источнику экспоненциально изменяющегося напряжения [math]u=E(1-e^<- frac>)[/math], напряжения на резисторе и конденсаторе будут изменяться согласно следующей формуле

Соответственно напряжение на конденсаторе будет равно разности напряжений источника и напряжения на резисторе

Временные диаграммы для uR представлены ниже при различных значениях q. При больших значениях q, то есть постоянной времени цепи τ, формы напряжений uR близки к формам, соответствующим ступенчатому изменению входного напряжения. При уменьшении τ, кроме сокращения длительности спада напряжения uR, уменьшается и максимальное значение uR.


Временные диаграммы напряжений на резисторе RC-цепи при различных значениях
q = τ/τ1.

Формулы и временные диаграммы для напряжений на выходе RL-цепи оказываются такими же, как и для RC-цепи.

Дифференцирующие цепи

Довольно часто в электронике вообще, а в импульсной в частности требуется преобразовать один вид импульсов в другой (например, прямоугольный преобразовать в треугольный). Для этой цели используют различные схемы, в основе которых простейшие RC- и RL-цепи. Такие цепи называются дифференцирующими и интернирующими цепями. Для начала рассмотрим дифференцирующие цепи, которые показаны на изображении ниже.

Читать еще:  Язык си чтение из файла

Своё название дифференцирующие цепи получили от того, что напряжение на выходе такой цепи пропорционально производной входного напряжения, а нахождение производной в математике называется дифференцирование. В случае RC-цепи напряжение снимается с резистора, а в случае RL-цепи – с индуктивности.

Простейшие .

В настоящее время большинство дифференцирующих цепей основаны на RC-цепях, поэтому будем рассматривать их, но все основные выкладки соответствуют также и RL-цепям.

Рассмотрим, как дифференцирующая цепь будет реагировать на прямоугольный импульс. Прямоугольный импульс представляет собой как бы два скачка напряжения. Реакцию RC-цепи на скачкообразное изменение напряжения рассматривалась выше, а в случае прямоугольного импульса выходное напряжение с дифференцирующей цепи будет в виде двух коротких импульсов различной полярности, длительность которых соответствует 3τ = 3RC и 3τ = 3L/R, в случае RL-цепи.


Реакция дифференцирующей цепи на прямоугольный импульс.

Из величины и формы выходного напряжения можно сделать вывод, что дифференциальные цепи вполне могут применяться для уменьшения длительности импульсов, что довольно часто применяется на практике и ранее такие цепи иногда называли укорачивающими.

Интегрирующие цепи

Интегрирующие цепи, так же как и дифференцирующие строят на основе RC- и RL-цепей, отличие заключается в том, откуда снимают выходное напряжение.


Простейшие RC и RL интегрирующие цепи.

Своё название интегрирующие цепи получили от того, что выходное напряжение, снимаемое с их выхода пропорционально интегралу от входного напряжения. Рассмотрим реакцию интегрирующей цепи на прямоугольный импульс напряжения. Напомню, что прямоугольный импульс, по сути, является напряжением, которое изменяется ступенчато два раза. В результате первого скачка напряжения конденсатор начинает заряжаться до тех пор, пока напряжение на входе не изменится, после этого начнётся разряд конденсатора по экспоненциальному закону.


Реакция интегрирующей цепи на прямоугольный импульс.

Не трудно заметить, что длительность импульса на выходе интегрирующей цепи несколько больше, чем длительность импульса на входе. Эту особенность нередко используют для увеличения длительности импульса, и такие цепи ранее называли расширяющими.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Основные сведения об электроэрозионной обработке

Электрические параметры процессов

В ЭЭО используются короткие во времени импульсы тока большой величины (от единиц до тысяч ампер) и достаточно высокого напряжения (до 200-300 В).

Для формирования импульсов напряжения, следующих друг за другом через определенные промежутки времени, применяют специальные устройства, называемые генераторами импульсов. Характеристики генераторов в основном определяют технологические показатели ЭЭО. В последнее время широкое применение получили статические (тиристорные и транзисторные) генераторы импульсов, имеющие различные характеристики и способные формировать импульсы напряжения различной формы и параметров.

Основными параметрами периодических импульсов напряжения различной формы являются: длительность, амплитуда, частота следования и скважность. Импульсы характеризуются также крутизной переднего и заднего фронтов, максимальным и средним значениями тока и напряжения, максимальной и средней мощностью импульса, энергией импульса. На рис. 4, а приведен идеальный прямоугольный униполярный импульс.

Практически любая электрическая цепь помимо активного омического сопротивления обладает емкостью и индуктивностью, которые являются инерционными элементами и вносят определенную задержку в нарастании, а также спаде переднего и заднего фронта. Поэтому фактически прямоугольный импульс имеет форму, показанную на рис. 4, б. Осциллограмма импульса тока и напряжения приведена на рис. 4, в. На рис. 4, б указаны основные параметры импульсов.

Длительность импульса т„ определяется временем его действия. При ЭЭО длительность импульса обычно лежит в пределах 10 -1 -10 -7 с. Длительность импульса при постоянной частоте связана со скважностью обратной пропорциональной зависимостью, т. е.

Промежуток времени между двумя импульсами называется паузой ти. Промежуток времени, через который наблюдается повторение начала или окончания импульсов называется периодом Т„.

Скважностью импульсов называется отношение периода повторения к длительности импульса

Различают скважность импульсов по э.д.с. и по току. В первом случае скважность импульсов характеризуется при холостом ходе генератора, во втором — при нагрузке.

определяется заданными длительностью и скважностью импульсов.

Энергия импульса — это работа, совершаемая единичным импульсом в МЭП. При технологических расчетах пользоваться этой величиной неудобно и ее заменяют эквивалентной ей величиной средней мощностью Рср или средним током Iср, т. е.

Амплитуда — наибольшее значение, которого достигают изменяющиеся во времени величины тока или напряжения. Амплитуда импульсов тока изменяется при ЭЭО от единиц до тысяч ампер, а амплитуда импульсов напряжения — от десятков до нескольких сотен вольт.

Мощность, реализуемая в межэлектродном промежутке, численно равна произведению энергии импульсов Wи на частоту их следования f, т. е.

Производительность ЭЭО можно определить по формуле

Коэффициент k учитывает ряд зависимостей, определяющих обрабатываемость материалов,

где С — теплоемкость обрабатываемого материала;

λ — коэффициент теплопроводности;

Т — температура плавления.

Согласно формуле (7) количество материала, удаляемого за время одного импульса, зависит от энергии импульса, а также от теплофизических констант обрабатываемого материала, т е. его температуры плавления, теплопроводности, теплоемкости и плотности. В связи с этим обрабатываемость различных материалов неодинакова. Если принять обрабатываемость углеродистых и низколегированных сталей за единицу, то обрабатываемость других материалов будет зависеть от изменения величины коэффициента k.

В импульсах различают передний фронт τп.ф (нарастание) и задний фронт τз.ф (спадание). Крутизна фронта характеризуется скоростью изменения тока или напряжения во времени.

Для достижения высоких технологических показателей ЭЭО разрядные импульсы, генерируемые источниками питания, могут отличаться от прямоугольных униполярных импульсов, показанных на рис. 4. Отечественные широкодиапазонные генераторы импульсов (ШГИ) наряду с прямоугольными импульсами могут формировать и гребенчатые. Это достигается сложением на нагрузке МЭП низкочастотных, так называемых «защитных» импульсов, с высокочастотными силовыми импульсами.

На рис. 5 приведены формы импульсов напряжения, генерируемые серийными отечественными генераторами модели ШГИ.

Прямоугольные импульсы (рис. 5, а) генерируются как отдельными импульсами, так и пакетами импульсов. Импульс состоит практически из двух частей: из «поджигающего» импульса большой амплитуды и малой длительности и рабочего-меньшей амплитуды, но значительно большей длительности. Поджигающий импульс служит для пробоя межэлектродного промежутка при больших его значениях, а рабочий импульс — для съема металла.

Гребенчатые импульсы (рис. 5, б) состоят из следующих друг за другом коротких рабочих импульсов со сравнительно большим напряжением и так называемых защитных импульсов, которые действуют в интервалах между рабочими. Такое сочетание импульсов позволяет снизить износ ЭИ.

Рассмотрим процесс развития искрового разряда в МЭП и изменения напряжения за время действия импульса напряжения.

При подаче на эрозионной МЭП импульса напряжения (рис. 6) в первый момент идет его нарастание (участок 0-1). Длительность нарастания зависит от крутизны переднего фронта импульса и величины и характера межэлектродного зазора. На этом участке проходит процесс ионизации рабочей среды. На втором участке 1-2 напряжение резко падает, что соответствует пробою межэлектродного зазора и образованию искрового разряда. Участок 2-3 соответствует времени разряда. На участке 3-4 происходит спад напряжения. Этот участок является задним фронтом импульса.

Параметры импульсов определенным образом оказывают влияние на электроэрозионный процесс.

Так, длительность и амплитуда импульса совместно определяют его энергию. Увеличение длительности импульса и амплитуды повышает его энергию, что приводит к росту скорости съема металла с детали и ухудшению качества поверхности. Изменение скважности импульсов при неизменной частоте их следования приводит к изменению длительности импульса и паузы между ними. Поскольку скважность импульса является обратной величиной заполнению импульсом периода, то уменьшение скважности вызывает повышение скорости съема металла. Скважность импульсов оказывает влияние на износ ЭИ. При работе с обратной полярностью электродов снижение скважности уменьшает износ ЭИ, а при прямой полярности электродов снижение скважности приводит к повышению износа ЭИ. Изменением скважности импульсов можно менять шероховатость обрабатываемой поверхности за счет изменения энергии импульса. Увеличение скважности улучшает качество поверхности, но приводит к износу ЭИ. Если задана шероховатость поверхности и износ ЭИ, то регулировать среднее значение рабочего тока целесообразно изменением скважности.

Частота следования импульсов, как и длительность импульса, влияет на те же технологические параметры. С ростом частоты снижается производительность процесса, улучшается качество поверхности и повышается точность ЭЭО.

На стабильность электроэрозионного процесса оказывают существенное влияние крутизна и стабильность импульсов напряжения, так как эти параметры импульса напряжения определяют постоянство и длительность импульсов тока, т. е. его энергию при постоянной амплитуде.

Энергоемкость электрической эрозии определяется теми процессами, которые происходят на границах между каналом разряда, с одной стороны, и анодом или катодом — с другой.

Процесс разряда сопровождается поступлением потока энергии на ту часть катода, которая граничит с каналом. Этот поток слагается из следующих составляющих: кинетической энергии ионов, потенциальной энергии ионов, тепловой энергии нейтральных частиц плазмы, тепловой и кинетической энергии паров расплавленного металла. Пополнение энергии осуществляется за счет энергии импульса.

Для практических целей о энергоемкости процесса можно судить по средней мощности, которая потребляется от генератора импульсов. Измерение мощности может быть произведено прибором ваттметром. Средние значения тока и напряжения на эрозионном промежутке за один период могут быть измерены приборами магнитоэлектрической системы.

Автор: Администрация Общая оценка статьи: Опубликовано: 2012.11.30 Обновлено: 2020.03.04

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Скважность импульсов

Электрические сигналы, которые имеют только 2 допустимых состояния «0» или «1», что соответствует уровню напряжения 0.2 вольта (В) или 4.9В, называются импульсными. В основном, оперируют с последовательностью импульсов. Одна из простейших последовательностей импульсов показа на рис. ниже.

Общая информация

К основным параметрам последовательности импульсов относятся:

  • l амплитуда импульса – Um,
  • l длительность импульса – tu,
  • l длительность паузы – tn,
  • l период следования T или частота f = 1/T следования.

Если длительность tu всех импульсов, входящих в состав последовательности, и всех пауз tn постоянна в течение времени, то она называется периодической.

Важным параметром периодического импульсного процесса является скважность импульсов S. Скважность импульсовэто отношение периода следования к длительности импульса, рассчитывается по формуле:

Эффективность S при управлении устройства достигается при стабильной частоте сигнала. Иногда используют обратную величину Dкоэффициент заполнения, рассчитывается по формуле:

При равенстве tu и tn скважность равна 2, и сигнал называется меандром. S и D – безразмерные величины, так как время делится на время. В цифровых устройствах применяются импульсы различной формы. Формой импульса называется графическое изображение закона изменения импульсного напряжения во времени. На рис. ниже показаны формы сигналов:

  • а – прямоугольная,
  • б – трапецеидальная,
  • в – экспоненциальная,
  • г – колокольная,
  • д – ступенчатая,
  • е – пилообразная.

Техническая характеристика формы импульсов связана с количественной оценкой основных параметров импульса, свойств отдельных его участков, которые играют разную роль при воздействии импульса на устройство. На рис. выше изображены идеализированные формы импульса. Из-за переходных процессов в устройствах (формирования и усиления импульсов) существует реальная форма, например, прямоугольного импульса (рис. ниже).

Основные параметры импульса – это:

  • l Размах импульса – Um,
  • l Длительность импульса – tи,
  • l Длительность переднего фронта – tф,
  • l Длительность заднего фронта – tсп,
  • l Спад вершины – ΔU,
  • l Размах выброса заднего фронта – Um обр,
  • l Длительность выброса заднего фронта – tи обр.

Указанные величины считываются между уровнями 0.1 и 0.9 от амплитуды в микросекундах, в зависимости от частоты сигнала. Амплитудные – в вольтах.

Определить параметры импульсного сигнала можно с помощью осциллографа, частотомера или мультиметра.

Управление скважностью

С помощью цифровых сигналов происходит управление разнообразными устройствами. Первое применение такого управления использовалось при передаче информации кодом Морзе. Сигнал передаётся короткими и длинными импульсами. Каждой букве соответствует определённый набор точек и тире. Сегодня этот метод управления используется для ШИМ-управления.

При изменении D (коэффициент заполнения) от 0 до 1 добиваются нужного напряжения на выходе электронного устройства. Таким образом, можно управлять оборотами двигателя, освещением, яркостью дисплея и т.д. При формировании прямоугольных импульсов используются специально разработанные микросхемы, например, NE555, NL494, КР1006ВИ1, IR2153, и микроконтроллеры: Arduino, AVR, SG2525A.

Для обеспечения надёжной работы управляемых устройств к параметрам импульсного сигнала предъявляются жестокие требования по их стабильности. Это достигается применением кварцевого генератора и хорошей переходной характеристикой схемы формирования управляющих импульсов.

Видео

Расширители импульсов

В системах передачи информации для ослабления влияния случайных флуктуаций, а также для управления в устройствах автоматики нередко требуется из коротких импульсов получать более широкие, определенной длительности. Эта задача легко реализуется с помощью ждущего мультивибратора (одновибратора). Одновибратор является триггерной схемой, которая генерирует одиночный импульс под действием внешнего управляющего сигнала. При этом подразумевается, что формируемый импульс превышает длительность запускающего.

Как правило, применяют один из двух методов формирования импульса: аналоговый или цифровой. Наиболее простым является аналоговый — используется процесс перезаряда конденсатора.

Рис. 1.9 Формирователь широкого импульса с использованием триггера Шмитта

Пример такой схемы показан на рис. 1.9. Для правильной работы данного одновибратора необходимо, чтобы длительность входного запускающего импульса была достаточно большой, чтобы конденсатор успел полностью разрядиться. После окончания запускающего импульса конденсатор заряжается через резистор до величины напряжения питания. При этом, как только напряжение достигнет Uпор — элемент D2.1 переключится. В этом случае длительность выходного импульса (tи) зависит от номиналов установленных емкости и резистора во времязадающей цепи. Упрощенная формула позволяет ориентировочно рассчитать длительность импульса:

, где Е — напряжение питания схемы; Uпор — уровень используемого порога (рис. 1.10) для переключения элемента.

Рис. 1.10. Области допустимых уровней сигнала на входе МОП микросхем

С учетом разброса значений напряжения порога переключения (Uпор) длительность импульса может принимать значения от tмин=0,4RC до tмax=1,11RC. Обычно в одновибраторах используются ЛЭ из одного корпуса (кристалла). В этом случае разброс Unop оказывается незначительным и можно принять tи=0,69RC. Это соотношение используется для определения длительности импульса в большинстве схем, рис. 1.11. 1.18. Эпюры напряжения поясняют процессы формирования выходного импульса. Схемы, показанные на одном рисунке, являются аналогичными по логике работы и имеют ту же самую диаграмму напряжений в контрольных точках.

Рис. 1.11. Одновибратор с одной времязадающей цепью

Рис. 1.12. Одновибратор на основе RS-триггера

Рис. 1.13. Одновибратор по фронту входного сигнала

Рис. 1.14. Одновибратор

Рис. 1.15. Формирователи импульса после окончания действия запускающего сигнала

Рис 1.16 Формирователи импульсов

Рис 1.17 Формирователи импульсов

Рис. 1.18 Одновибраторы с двумя времязадающими цепями

В отличие от простейшего варианта (рис 1.9) схемы, приведенные на рис. 1.11. 1.14 не чувствительны к длительности входного импульса, из-за чего наиболее широко применяются в аппаратуре. Схемам, рис. 1.9, 1.15. 1.17, присуще свойство перезапуска, т. е. если во время формирования выходного импульса появляется очередной запускающий, то отсчет длительности формируемого импульса начнется заново от момента окончания последнего запускающего.

Применяемые в схемах диоды ускоряют процесс перезаряда емкости, что уменьшает возможности возникновения импульсных помех на выходе ЛЭ.

Чтобы выходное сопротивление ЛЭ не сказывалось на точности расчета, а также не перегружался выход, резистор R1 должен быть номиналом не менее 10. 20 кОм. Чтобы пренебречь при расчетах емкостью монтажа, минимальная емкость С1 может быть 200. 600 пФ. Для получения высокой температурной стабильности временного интервала номинал R1 должен быть 0,01 мкФ. Более точно определить позволяет приводимая в справочнике [Л8] диаграмма.

Рис. 1. 23 Ждущий мультивибратор на триггере с возможностью перезапуска.

Рис. 1. 24 Ждущий мультивибратор с возможностью перезапуска.

Если требуется иметь перезапуск одновибратора на триггере, в случае прихода очередного входного импульса во время формирования интервала, то схема на рис. 1.23 позволяет увеличить длительность выходного импульса за счет начала отсчета с момента окончания запускающего сигнала. Аналогичная схема приведена на рис. 1. 24. Когда на входе действует лог. «0», конденсатор заряжен до величины напряжения питания (лог. «1»). При поступлении запускающего импульса с длительностью, достаточной для разряда конденсатора, триггер перебросится и генерирует импульс. Длительность этого импульса, после окончания действия входного сигнала, определяется необходимым временем для заряда конденсатора до уровня лог. «1».

Рис. 1.25 Ждущий мультивибратор с повышенной крутизной фронта выходных импульсов.

Схема (рис. 1.25), в отличии от вышеприведенной, позволяет получить более крутые фронты у сигнала на выходах триггера Второе преимущество этой схемы заключается в том, что по окончании вырабатываемого импульса конденсатор быстро разряжается через диод от уровня Uпор вместо дозаряда до уровня питания (Е) Из-за этого следующий запускающий импульс может быть значительно короче, при сохранении нулевого времени восстановления

Второй метод получения импульса нужной длительности связан с использованием счетчиков — цифровых одновибраторов Их применяют, когда временной интервал должен быть очень большим или предъявляют высокие требования к стабильности формируемого интервала В этом случае минимальная получаемая длительность ограничена только быстродействием используемых элементов, а максимальная длительность может быть любой (в отличие от схем, использующих RC-цепи).

Рис. 1. 26 Цифровой одновибратор на программируемом счетчике.

Принцип работы цифрового одновибратора основан на включении триггера входным сигналом и отключении через временной интервал, определяемый коэффициентом пересчета счетчика. Использование в одновибраторе счетчиков с переключаемым коэффициентом деления, рис. 1.26, позволяет получить импульс любой длительности. Микросхема 564ИЕ 15 состоит из пяти вычитающих счетчиков, модули пересчета которых программируются параллельной загрузкой данных в двоичном коде. На загрузку чисел в счетчики требуется три такта, поэтому можно устанавливать коэффициент деления N>3 [Л2].

Ссылка на основную публикацию
Adblock
detector