Tooprogram.ru

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

К основным единицам системы си относятся

Система СИ

Главная // Наша библиотека // Справочник // Система СИ

Содержание


  • 1 Общие сведения
  • 2 История
  • 3 Единицы системы СИ
    • 3.1 Основные единицы
    • 3.2 Производные единицы
  • 4 Единицы, не входящие в СИ
  • Приставки

Общие сведения

Система СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.

Система СИ определяет семь основных и производные единицы измерения, а также набор приставок . Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.

В России действует ГОСТ 8.417-2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).

Основные единицы : килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.

Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

История

Система СИ основана на метрической системе мер, которая была создана французскими учеными и впервые была широко внедрена после Великой Французской революции. До введения метрической системы, единицы измерения выбирались случайно и независимо друг от друга. Поэтому пересчет из одной единицы измерения в другую был сложным. К тому же в разных местах применялись разные единицы измерения, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов.

В 1799 г. были утверждены два эталона — для единицы измерения длины ( метр) и для единицы измерения веса ( килограмм).

В 1874 г. была введена система СГС, основанная на трех единицах измерения — сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега.

В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, т. к. эти единицы были признаны более удобными для практического использования.

В последующем были введены базовые единицы для измерения физических величин в области электричества и оптики.

В 1960 г. XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».

В 1971 г. IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу измерения количества вещества ( моль).

В настоящее время СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).

Единицы системы СИ

После обозначений единиц Системы СИ и их производных точка не ставится, в отличие от обычных сокращений.

Основные единицы


ВеличинаЕдиница измеренияОбозначение
русское названиемеждународное названиерусскоемеждународное
Длинаметрmetre (meter)мm
Массакилограммkilogramкгkg
Времясекундаsecondсs
Сила электрического токаамперampereАA
Термодинамическая температуракельвинkelvinКK
Сила светаканделаcandelaкдcd
Количество веществамольmoleмольmol

Производные единицы

Производные единицы могут быть выражены через основные с помощью математических операций умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется или определения физической величины, для которой она вводится. Например, скорость — это расстояние, которое тело проходит в единицу времени. Соответственно, единица измерения скорости — м/с (метр в секунду).

Часто одна и та же единица измерения может быть записана по разному, с помощью разного набора основных и производных единиц (см., например, последнюю колонку в таблице Производные единицы с собственными названиями ). Однако, на практике используются установленные (или просто общепринятые) выражения, которые наилучшим образом отражают физический смысл измеряемой величины. Например, для записи значения момента силы следует использовать Н×м, и не следует использовать м×Н или Дж.

Производные единицы с собственными названиями
ВеличинаЕдиница измеренияОбозначениеВыражение
русское названиемеждународное названиерусскоемеждународное
Плоский уголрадианradianрадradм×м -1 = 1
Телесный уголстерадианsteradianсрsrм 2 ×м -2 = 1
Температура по шкале Цельсияградус Цельсия°Cdegree Celsius°CK
ЧастотагерцhertzГцHzс -1
СиланьютонnewtonНNкг×м/c 2
ЭнергияджоульjouleДжJН×м = кг×м 2 /c 2
МощностьваттwattВтWДж/с = кг×м 2 /c 3
ДавлениепаскальpascalПаPaН/м 2 = кг?м -1 ?с 2
Световой потоклюменlumenлмlmкд×ср
Освещённостьлюксluxлкlxлм/м 2 = кд×ср×м -2
Электрический зарядкулонcoulombКлCА×с
Разница потенциаловвольтvoltВVДж/Кл = кг×м 2 ×с -3 ×А -1
СопротивлениеомohmОмΩВ/А = кг×м 2 ×с -3 ×А -2
ЁмкостьфарадfaradФFКл/В = кг -1 ×м -2 ×с 4 ×А 2
Магнитный потоквеберweberВбWbкг×м 2 ×с -2 ×А -1
Магнитная индукциятеслаteslaТлTВб/м 2 = кг×с -2 ×А -1
ИндуктивностьгенриhenryГнHкг×м 2 ×с -2 ×А -2
Электрическая проводимостьсименсsiemensСмSОм -1 = кг -1 ×м -2 ×с 3 А 2
РадиоактивностьбеккерельbecquerelБкBqс -1
Поглощённая доза ионизирующего излучениягрэйgrayГрGyДж/кг = м 2 /c 2
Эффективная доза ионизирующего излучениязивертsievertЗвSvДж/кг = м 2 /c 2
Активность катализаторакаталkatalкатkatmol×s -1

Единицы, не входящие в Систему СИ

Некоторые единицы измерения, не входящие в Систему СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».

Единица измеренияМеждународное названиеОбозначениеВеличина в единицах СИ
русскоемеждународное
минутаminuteминmin60 с
часhourчh60 мин = 3600 с
суткиdayсутd24 ч = 86 400 с
градусdegree°°(П/180) рад
угловая минутаminute(1/60)° = (П/10 800)
угловая секундаsecond(1/60)′ = (П/648 000)
литрlitre (liter)лl, L1 дм 3
тоннаtonneтt1000 кг
неперneperНпNp
белbelБB
электронвольтelectronvoltэВeV10 -19 Дж
атомная единица массыunified atomic mass unitа. е. м.u=1,49597870691 -27 кг
астрономическая единицаastronomical unitа. е.ua10 11 м
морская миляnautical mileмиля1852 м (точно)
узелknotуз1 морская миля в час = (1852/3600) м/с
арareаa10 2 м 2
гектарhectareгаha10 4 м 2
барbarбарbar10 5 Па
ангстремångströmÅÅ10 -10 м
барнbarnбb10 -28 м 2

Приставки СИ для образования десятичных и дольных единиц

Система СИ (единицы измерения)

В 1875 г. Метрической Конференцией было основано Международное Бюро Мер и Весов его целью стало создание единой системы измерений, которая нашла бы применение во всем мире. Было решено, за основу принять метрическую систему, которая появилась еще во времена Французской революции и основывалась на метре и килограмме. Позднее были утверждены эталоны метра и килограмма. С течением времени система единиц измерения развивалась, в настоящее время в ней принять семь основных единиц измерения. В 1960 г. эта система единиц получила современное название Международная система единиц ( система СИ) (Systeme Internatinal d’Unites (SI)). Система СИ не обладает статичностью, она развивается в соответствии с требованиями, которые в настоящее время предъявляются к измерениям в науке и технике.

Основные единицы измерения Международной системы единиц

В основу определения всех вспомогательных единиц в системе СИ положены семь основных единиц измерения. Основными физическими величинами в Международной системе единиц (СИ) являются: длина ($l$); масса ($m$); время ($t$); сила электрического тока ($I$); температура по шкале Кельвина (термодинамическая температура) ($T$); количество вещества ($nu $); сила света ($I_v$).

Основными единицами в системе СИ стали единицы выше названных величин:

[left[lright]=м;; left[mright]=кг;; left[tright]=с; left[Iright]=A;; left[Tright]=K;; left[nu right]=моль;; left[I_vright]=кд (кандела).]

Эталоны основных единиц измерения в СИ

Приведем определения эталонов основных единиц измерения как это сделано в системе СИ.

Метром (м) называют длину пути, который проходит свет в вакууме за время равное $frac<1><299792458>$ с.

Эталоном массы для СИ является гиря, имеющая форму прямого цилиндра, высота и диаметр которого 39 мм, состоящего из сплава платины и иридия массой в 1 кг.

Одной секундой (с) называют интервал времени, который равен 9192631779 периодам излучения, который соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия (133).

Один ампер (А) — это сила тока, проходящего в двух прямых бесконечно тонких и длинных проводниках, расположенных на расстоянии 1 метр, находящихся в вакууме порождающая силу Ампера (сила взаимодействия проводников) равную $2cdot <10>^<-7>Н$ на каждый метр проводника.

Один кельвин (К)— это термодинамическая температура равная $frac<1><273,16>$ части от температуры тройной точки воды.

Один мол (моль) — это количество вещества, в котором имеется столько же атомов, сколько их содержится в 0,012 кг углерода (12).

Одна кандела (кд) равна силе света, который испускает монохроматический источник частотой $540cdot <10>^<12>$Гц с энергетической силой в направлении излучения $frac<1><683>frac<Вт><ср>.$

Наука развивается, совершенствуется измерительная техника, определения единиц измерения пересматривают. Чем выше точность измерений, тем больше требований к определению единиц измерения.

Производные величины системы СИ

Все остальные величины рассматриваются в системе СИ как производные от основных. Единицы измерения производных величин определены как результат произведения (с учетом степени) основных. Приведем примеры производных величин и их единиц в системе СИ.

В системе СИ имеются и безразмерные величины, например, коэффициент отражения или относительная диэлектрическая проницаемость. Эти величины имеют размерность единицы.

Система СИ включает производные единицы, обладающие специальными названиями. Эти названия — компактные формы представления комбинации основных величин. Приведем примеры единиц системы СИ, имеющих собственные наименования (табл. 2).

Каждая величина в системе СИ имеет только одну единицу измерения, но одна и та же единица измерения может использоваться для разных величин. Джоуль — единица измерения количества теплоты и работы.

Система СИ, единицы измерения кратные и дольные

В Международной системе единиц имеется набор приставок к единицам измерения, которые применяют, если численные значения рассматриваемых величин существенно больше или меньше, чем единица системы, которая применяется без приставки. Эти приставки используются с любыми единицами измерения, в системе СИ они являются десятичными.

Приведем примеры таких приставок (табл.3).

При написании приставку и наименование единицы пишут слитно, так, что приставка и единица измерения образуют единый символ.

Отметим, что единица массы в системе СИ (килограмм) исторически уже имеет приставку. Десятичные кратные и дольные единицы килограмма получают соединением приставки к грамму.

Внесистемные единицы

Система СИ универсальна и является удобной в международном общении. Практически все единицы, единицы не входящие в систему СИ можно определить, используя термины системы СИ. Применение системы СИ является предпочтительным в научном образовании. Однако имеются некоторые величины, которые не входят в СИ, но широко используются. Так, единицы времени такие как минута, час, сутки являются частью культуры. Не которые единицы используют по исторически сложившимся причинам. При использовании единиц, которые не принадлежат системе СИ необходимо указывать способы их перевода в единицы СИ. Пример единиц указан в табл.4.

Примеры задач с решением

Задание. Приведите примеры известных Вам внесистемных единиц и соотношение их с единицами системы СИ.

Решение. Примерами внесистемных единиц являются:

Задание. Объясните, почему одним метром называют длину пути, который проходит свет за время равное $frac<1><299792458>$ с в вакууме?

Решение. Сделаем рисунок.

Для того чтобы ответить на вопрос вспомним формулу для вычисления величины скорости при равномерном движении:

Вычислим скорость света в вакууме при заданных параметрах $l$ = 1 м; $t=frac<1><299792458>$ с :

Так, мы получили точную скорость света в вакууме.

Ответ. Один метр определяют таким образом, чтобы при вычислении скорости света в вакууме получалась величина, равная $v=299792458 frac<м><с>.$

Справочник

Определения основных единиц системы СИ

СЕКУНДА

Секунда, символ с (s), определяется путем установления фиксированного числового значения частоты сверхтонкого перехода основного состояния атома цезия-133 Dn Cs равным точно 9 192 631 770 Гц (или с –1 ),

Выражение для единицы секунды в терминах определяющей константы Dn Cs :

Из этого определения следует, что секунда равна продолжительности 9 192 631 770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями невозмущенного основного состояния атома 133 Cs.

МЕТР

Метр, символ м (m), определяется путем установления фиксированного числового значения скорости света в вакууме c равным 299 792 458 мс – 1 , где секунда определяется в терминах частоты перехода атома цезия Dn Cs .

Выражение для единицы метра в терминах определяющих констант c и Dn Cs :

Из этого определения следует, что один метр — это длина пути, пройденного светом в вакууме в течение интервала времени с длительностью 1/299 792 458 секунды

КИЛОГРАММ

Килограмм, символ кг (kg), определяется путем установления фиксированного числового значения постоянной Планка h равным 6,626 070 15 x 10 –34 в размерности Дж с ( J s) , или кг м 2 с –1 , где метр и секунда определяются через константы C и Dn Cs .

Точное выражение для килограмма в терминах трех определяющих констант h , Dn Cs и c :

АМПЕР

Ампер, символ А, является единицей СИ электрического тока. Он определяется путем установления фиксированного числового значения элементарного заряда e равным 1,602 176 634 x 10 -19, в размерности А с (A s), где секунда с определена через Dn Cs .

Точное выражение для ампера в терминах определяющих констант e и Dn Cs :

Как следует из определения, один ампер является электрическим током, соответствующим потоку 1 / (1.602 176 634 x 10 –19 ) элементарных зарядов в секунду.

КЕЛЬВИН

Кельвин, символ К, является единицей термодинамической температуры. Он определяется путем установления фиксированного числового значения постоянной Больцмана k равным 1,380 649 x 10 –23 в единицах Дж К -1 (J K -1 ), что соответствует кг м 2 с –2 К -1 , где килограмм, метр и секунда определены через константы h , c и Dn Cs

Точное выражение для кельвина в терминах определяющих констант k , h и Dn Cs :

Из этого определения следует, что один кельвин равен изменению термодинамической температуры, приводящему к изменению тепловой энергии k T на 1,380 649 x 10 –23 Дж.

МОЛЬ

Моль, символ моль, является единицей количества вещества. Один моль содержит ровно 6,022 140 76 x 10 23 структурных элементов. Это число является фиксированным числовым значением постоянной Авогадро, N A , в размерности моль -1, и называется числом Авогадро.

Количество вещества, символ n , системы является мерой количества указанных структурных элементов. Элементом может быть атом, молекула, ион, электрон, любая другая частица или указанная группа частиц.

Точное выражение для моли в терминах определяющей константы N A :

Из этого определения следует вывод, что моль представляет собой количество вещества системы, которое содержит 6,022 140 76 x 10 23 определенных структурных единиц.

КАНДЕЛА

Кандела, символ cd, представляет собой единицу СИ силы света в заданном направлении. Он определяется посредством установления фиксированнового числового значения световой эффективности монохроматического излучения с частотой 540 x 10 12 Гц, K cd , равным 683 в единицах лм Вт -1 , что равно кд ср Вт -1 , или кд ср кг -1 м -2 с 3 , где килограмм, метр и секунда определяются в единицах h , c и Dn Cs .

Точное выражение для канделы в терминах определяющих констант K cd , h и Dn Cs

Из определения следует, что одна кандела это сила света в заданном направлении источника, который испускает монохроматическое излучение с частотой 540 x 10 12 Гц и имеет интенсивность излучения в этом направлении (1/683) Вт / ср.

Читать еще:  Команда умножения в ассемблере
Ссылка на основную публикацию
Adblock
detector