Tooprogram.ru

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Указатель в си это

Указатель в языке Си

Указатель — переменная, содержащая адрес объекта. Указатель не несет информации о содержимом объекта, а содержит сведения о том, где размещен объект.

Указатели широко используются в программировании на языке Си.
Указатели часто используются при работе с массивами.

Память компьютера можно представить в виде последовательности пронумерованных однобайтовых ячеек, с которыми можно работать по отдельности или блоками.

Каждая переменная в памяти имеет свой адрес — номер первой ячейки, где она расположена, а также свое значение. Указатель — это тоже переменная, которая размещается в памяти. Она тоже имеет адрес, а ее значение является адресом некоторой другой переменной. Переменная, объявленная как указатель, занимает 4 байта в оперативной памяти (в случае 32-битной версии компилятора).

Указатель, как и любая переменная, должен быть объявлен.
Общая форма объявления указателя

Тип указателя — это тип переменной, адрес которой он содержит.

Для работы с указателями в Си определены две операции:

  • операция * (звездочка) — позволяет получить значение объекта по его адресу — определяет значение переменной, которое содержится по адресу, содержащемуся в указателе;
  • операция & (амперсанд) — позволяет определить адрес переменной.


Для указанного примера обращение к одним и тем же значениям переменной и адреса представлено в таблице

ПеременнаяУказатель
Адрес&cp
Значениеc*p

Расположение в памяти переменной a и указателя b:

Необходимо помнить, что компиляторы высокого уровня поддерживают прямой способ адресации: младший байт хранится в ячейке, имеющей младший адрес.

Комментариев к записи: 32

/Рабочий стол/CodeC$ gcc pointers.c -o pointers.exe pointers.c: In function ‘main’: pointers.c:12:62: warning: format ‘%x’ expects argument of type ‘unsigned int’, but argument 2 has type ‘int *’ [-Wformat=] printf(«n Адрес переменной a равен %x шестн.», &a);

%ls pointers.c:14:66: warning: format ‘%x’ expects argument of type ‘unsigned int’, but argument 2 has type ‘int *’ [-Wformat=] printf(«n Значение указателя b равно %x шестн.», b);

^ %ls pointers.c:15:85: warning: format ‘%x’ expects argument of type ‘unsigned int’, but argument 2 has type ‘int **’ [-Wformat=] ntf(«n Адрес расположения указателя b равен %x шестн.», &b);

#include
#include
#include

void helloWorld (GtkWidget *wid, GtkWidget *win)
<
GtkW >NULL ;

dialog = gtk_message_dialog_new (GTK_WINDOW (win), GTK_DIALOG_MODAL,
GTK_MESSAGE_INFO, GTK_BUTTONS_CLOSE, sqlite3_libversion());
gtk_window_set_position (GTK_WINDOW (dialog), GTK_WIN_POS_CENTER);
gtk_dialog_run (GTK_DIALOG (dialog));
gtk_widget_destroy (dialog);
>

int main ( int argc, char *argv[])
<
GtkW >NULL ;
GtkW >NULL ;
GtkW >NULL ;

/* Initialize GTK+ */
g_log_set_handler ( «Gtk» , G_LOG_LEVEL_WARNING, (GLogFunc) gtk_false, NULL );
gtk_init (&argc, &argv);
g_log_set_handler ( «Gtk» , G_LOG_LEVEL_WARNING, g_log_default_handler, NULL );

/* Create the main window */
win = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_container_set_border_width (GTK_CONTAINER (win), 8);
gtk_window_set_default_size (GTK_WINDOW (win), 400, 200);
gtk_window_set_title (GTK_WINDOW (win), «Hello World» );
gtk_window_set_position (GTK_WINDOW (win), GTK_WIN_POS_CENTER);
gtk_widget_realize (win);
g_signal_connect (win, «destroy» , gtk_main_quit, NULL );

/* Create a vertical box with buttons */
vbox = gtk_box_new (GTK_ORIENTATION_VERTICAL, 6);
gtk_container_add (GTK_CONTAINER (win), vbox);

button = gtk_button_new_from_stock (GTK_STOCK_DIALOG_INFO);
g_signal_connect (G_OBJECT (button), «clicked» , G_CALLBACK (helloWorld), (gpointer) win);
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);

button = gtk_button_new_from_stock (GTK_STOCK_CLOSE);
g_signal_connect (button, «clicked» , gtk_main_quit, NULL );
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);

/* Enter the main loop */
gtk_widget_show_all (win);
gtk_main ();
return 0;
>

Указатели

Указатели

Э то, пожалуй, самая сложная и самая важная тема во всём курсе. Без понимания указателей дальнейшее изучении си будет бессмысленным. Указатели – очень простая концепция, очень логичная, но требующая внимания к деталям.

Определение

У казатель – это переменная, которая хранит адрес области памяти. Указатель, как и переменная, имеет тип. Синтаксис объявления указателей

Например
float *a;
long long *b;
Два основных оператора для работы с указателями – это оператор & взятия адреса, и оператор * разыменования. Рассмотрим простой пример.

Рассмотрим код внимательно, ещё раз

Была объявлена переменная с именем A. Она располагается по какому-то адресу в памяти. По этому адресу хранится значение 100.

Создали указатель типа int.

Теперь переменная p хранит адрес переменной A. Используя оператор * мы получаем доступ до содержимого переменной A.
Чтобы изменить содержимое, пишем

После этого значение A также изменено, так как она указывает на ту же область памяти. Ничего сложного.
Теперь другой важный пример

Будет выведено
4
4
8
4
Несмотря на то, что переменные имеют разный тип и размер, указатели на них имеют один размер. Действительно, если указатели хранят адреса, то они должны быть целочисленного типа. Так и есть, указатель сам по себе хранится в переменной типа size_t (а также ptrdiff_t), это тип, который ведёт себя как целочисленный, однако его размер зависит от разрядности системы. В большинстве случаев разницы между ними нет. Зачем тогда указателю нужен тип?

Арифметика указателей

В о-первых, указателю нужен тип для того, чтобы корректно работала операция разыменования (получения содержимого по адресу). Если указатель хранит адрес переменной, необходимо знать, сколько байт нужно взять, начиная от этого адреса, чтобы получить всю переменную.
Во-вторых, указатели поддерживают арифметические операции. Для их выполнения необходимо знать размер.
операция + N сдвигает указатель вперёд на N*sizeof(тип) байт.
Например, если указатель int *p; хранит адрес CC02, то после p += 10; он будет хранить адрес СС02 + sizeof(int)*10 = CC02 + 28 = CC2A (Все операции выполняются в шестнадцатиричном формате). Пусть мы создали указатель на начало массива. После этого мы можем «двигаться» по этому массиву, получая доступ до отдельных элементов.

Заметьте, каким образом мы получили адрес первого элемента массива

Массив, по сути, сам является указателем, поэтому не нужно использовать оператор &. Мы можем переписать пример по-другому

Получить адрес первого элемента и относительно него двигаться по массиву.
Кроме операторов + и — указатели поддерживают операции сравнения. Если у нас есть два указателя a и b, то a > b, если адрес, который хранит a, больше адреса, который хранит b.

Если же указатели равны, то они указывают на одну и ту же область памяти.

Указатель на указатель

У казатель хранит адрес области памяти. Можно создать указатель на указатель, тогда он будет хранить адрес указателя и сможет обращаться к его содержимому. Указатель на указатель определяется как

Очевидно, ничто не мешает создать и указатель на указатель на указатель, и указатель на указатель на указатель на указатель и так далее. Это нам понадобится при работе с двумерными и многомерными массивами. А вот простой пример, как можно работать с указателем на указатель.

Указатели и приведение типов

Т ак как указатель хранит адрес, можно кастовать его до другого типа. Это может понадобиться, например, если мы хотим взять часть переменной, или если мы знаем, что переменная хранит нужный нам тип.

В этом примере мы пользуемся тем, что размер типа int равен 4 байта, а char 1 байт. За счёт этого, получив адрес первого байта, можно пройти по остальным байтам числа и вывести их содержимое.

NULL pointer — нулевой указатель

У казатель до инициализации хранит мусор, как и любая другая переменная. Но в то же время, этот «мусор» вполне может оказаться валидным адресом. Пусть, к примеру, у нас есть указатель. Каким образом узнать, инициализирован он или нет? В общем случае никак. Для решения этой проблемы был введён макрос NULL библиотеки stdlib.
Принято при определении указателя, если он не инициализируется конкретным значением, делать его равным NULL.

По стандарту гарантировано, что в этом случае указатель равен NULL, и равен нулю, и может быть использован как булево значение false. Хотя в зависимости от реализации NULL может и не быть равным 0 (в смысле, не равен нулю в побитовом представлении, как например, int или float).
Это значит, что в данном случае

вполне корректная операция, а в случае

поведение не определено. То есть указатель можно сравнивать с нулём, или с NULL, но нельзя NULL сравнивать с переменной целого типа или типа с плавающей точкой.

Примеры

Теперь несколько примеров работы с указателями
1. Пройдём по массиву и найдём все чётные элементы.

2. Когда мы сортируем элементы часто приходится их перемещать. Если объект занимает много места, то операция обмена местами двух элементов будет дорогостоящей. Вместо этого можно создать массив указателей на исходные элементы и отсортировать его. Так как размер указателей меньше, чем размер элементов целевого массива, то и сортировка будет происходить быстрее. Кроме того, массив не будет изменён, часто это важно.

3. Более интересный пример. Так как размер типа char всегда равен 1 байт, то с его помощью можно реализовать операцию swap – обмена местами содержимого двух переменных.

В этом примере можно поменять тип переменных a и b на double или любой другой (с соответствующим изменением вывода и вызова sizeof), всё равно мы будет обменивать местами байты двух переменных.

4. Найдём длину строки, введённой пользователем, используя указатель

Указатели в C++. Введение

Хотелось бы с самого начала прояснить одну вещь — я не отношу себя к категории true-кодеров, сам учусь по специальности, не связанной с разработкой ПО, и это мой первый пост. Прошу судить по всей строгости. Итак, в свое время то ли по причине того, что я спал на лекциях, то ли я не особо вникал в эту тему, но у меня возникали некоторые сложности при работе с указателями в плюсах. Теперь же ни одна моя даже самая крохотная быдлокодерская программа не обходится без указателей. В данной статье я попытаюсь рассказать базовые вещи: что такое указатели, как с ними работать и где их можно применять. Повторюсь, изложенный ниже материал предназначен для новичков.

/* Ребят, в статье было найдено много ошибок. Спасибо тем людям, которые внесли свои замечания. В связи с этим — после прочтения статьи обязательно перечитайте комментарии */

1. Общие сведения

Итак, что же такое указатель? Указатель — это та же переменная, только инициализируется она не значением одного из множества типов данных в C++, а адресом, адресом некоторой переменной, которая была объявлена в коде ранее. Разберем на примере:

# Здесь ниже, конечно, я ребятки вам соврал. Переменная i_val — статическая, она явно будет размещена в стеке. В куче место выделяется под динамические объекты. Это важные вещи! Но в данном контексте, я, сделав сам себе замечание, позволю оставить себе все как есть, так что сильно не ругайтесь.

Мы объявили переменную типа int и здесь же ее проинициализировали. Что же произойдет при компиляции программы? В оперативной памяти, в куче, будет выделено свободное место такого размера, что там можно будет беспрепятственно разместить значение нашей переменной i_val. Переменная займет некоторый участок памяти, разместившись в нескольких ячейках в зависимости от своего типа; учитывая, что каждая такая ячейка имеет адрес, мы можем узнать диапазон адресов, в пределах которого разместилось значение переменной. В данном случае, при работе с указателями нам нужен лишь один адрес — адрес первой ячейки, именно он и послужит значением, которым мы проинициализируем указатель. Итак:

Используя унарную операцию взятия адреса &, мы извлекаем адрес переменной i_val и присваиваем ее указателю. Здесь стоит обратить внимание на следующие вещи:

  1. Тип, используемый при объявлении указателя в точности должен соответствовать типу переменной, адрес которой мы присваиваем указателю.
  2. В качестве типа, который используется при объявлении указателя, можно выбрать тип void. Но в этом случае при инициализации указателя придется приводить его к типу переменной, на которую он указывает.
  3. Не следует путать оператор взятия адреса со ссылкой на некоторое значение, которое так же визуально отображается символом &.

Теперь, когда мы имеем указатель на переменную i_val мы можем оперировать ее значением не только непосредственно с помощью самой переменной, но и с помощью указателя на нее. Посмотрим, как это работает на простом примере:

  1. Здесь все ясно — используем саму переменную.
  2. Во втором случае — мы обращаемся к значению переменной i_val через указатель. Но, как вы заметили, мы не просто используем имя указателя — здесь используется операция разыменования: она позволяет перейти от адреса к значению.

В предыдущем примере был организован только вывод значения переменной на экран. Можем ли мы непосредственно через указатель оперировать с значением переменной, на которую он указывает? Да, конечно, для этого они и реализованы (однако, не только для этого — но об этом чуть позже). Все, что нужно — сделать разыменование указателя:

2. Массивы

Сразу перейдем к примеру — рассмотрим статичный одномерный массив определенной длинны и инициализируем его элементы:

А теперь будем обращаться к элементам массива, используя указатели:

Что здесь происходит: мы инициализируем указатель arr_ptr адресом начала массива i_array. Затем, в цикле мы выводим элементы, обращаясь к каждому с помощью начального адреса и смещения. То есть:

это тот же самый нулевой элемент, смещение нулевое (i = 0),
— первый (i = 1), и так далее.

Однако, здесь возникает естественный вопрос — почему присваивая указателю адрес начала массива, мы не используем операцию взятия адреса? Ответ прост — использование идентификатора массива без указания квадратных скобок эквивалентно указанию адреса его первого элемента. Тот же самый пример, только в указатель «явно» занесем адрес первого элемента массива:

Пройдем по элементам с конца массива:
Замечания:

  1. Запись array[i] эквивалентна записи *(array + i). Никто не запрещает использовать их комбинированно: (array + i)[1] — в этом случае смещение идет на i, и еще на единичку. Однако, в данном случае перед выражением (array + i) ставить * не нужно. Наличие скобок это «компенсирует.
  2. Следите за вашими „перемещениями“ по элементам массива — особенно если вам захочется использовать порнографический такой метод записи, как (array + i)[j].

3. Динамическое выделение памяти

Вот та замечательная плюшка, из-за которой я использую указатели. Начнем с динамических массивов. Зачастую при решении какой-либо задачи возникает потребность в использовании массива неопределенного размера, то есть размер этот заранее неизвестен. Здесь нам на помощь приходят динамические массивы — память под них выделяется в процессе выполнения программы. Пример:

Что здесь происходит: мы объявляем указатель и инициализируем его началом массива, под который выделяется память оператором new на size элементов. Следует заметить, что в этом случае мы можем использовать те же приемы в работе с указателями, что и с статическим массивом. Что следует из этого извлечь — если вам нужна какая — то структура (как массив, например), но ее размер вам заранее неизвестен, то просто сделайте объявление этой структуры, а проинициализируете ее уж позже. Более полный пример приведу чуть позже, а пока что — рассмотрим двойные указатели.

Что такое указатель на указатель? Это та же переменная, которая хранит адрес другого указателя „более низкого порядка“. Зачем он нужен? Для инициализации двумерного динамического массива, например:

А тройной указатель? Трехмерный динамический массив. Неинтересно, скажите вы, так можно продолжать до бесконечности. Ну хорошо. Тогда давайте представим себе ситуацию, когда нам нужно разместить динамические объекты какого-нибудь класса MyClass в двумерном динамическом массиве. Как это выглядит (пример иллюстрирует исключительно использование указателей, приведенный в примере класс никакой смысловой нагрузки не несет):

Здесь два указателя нужны для формирования матрицы, в которой будут располагаться объекты, третий — собственно для размещения там динамических объектов (не MyClass a, а MyClass* a). Это не единственный пример использования указателей такого рода, чуть ниже будут рассмотрены еще примеры.

4. Указатель как аргумент функции

Для начала создадим два динамических массива размером 4×4 и проинициализируем их элементы некоторыми значениями:

Функция f1 выводит значения массивов на экран: первый ее аргумент указатель на двумерный массив, второй — его размерность (указывается одно значение, потому как мы условились для простоты работать с массивами, где количество строк совпадает с количеством столбцов).

Задача: заменить значения элементов массива a соответствующими элементами из массива b, учитывая, что это должно произойти в некоторой функции, которая так или иначе занимается обработкой массивов. Цель: разобраться в способе передачи указателей для их дальнейшей модификации.

    Вариант первый. Передаем собственно указатели a и b в качестве параметров функции:

После вызова данной функции в теле mainf2(a, b, 4) содержимое массивов a и b станет одинаковым.

Вариант второй. Заменить значение указателя: просто присвоить значение указателя b указателю a.

Однако, нам интересен случай, когда массивы обрабатываются в некоторой функции. Что первое приходит на ум? Передать указатели в качестве параметров нашей функции и там сделать то же самое: присвоить указателю a значение указателя b. То есть реализовать следующую функцию:

Сработает ли она? Если мы внутри функции f3 вызовем функцию f1(a, 4), то увидим, что значения массива действительно поменялись. НО: если мы посмотрим содержимое массива a в main — то обнаружим обратное — ничего не изменилось. Так в чем же причина? Все предельно просто: в функции f3 мы работали не с самим указателем a, а с его локальной копией! Все изменения, которые произошли в функции f3 — затронули только локальную копию указателя, но никак не сам указатель a. Давайте посмотрим на следующий пример:

Итак, я думаю, вы поняли, к чему я веду. Переменной a нельзя присвоить таким образом значение переменной b — ведь мы передавали их значения напрямую, а не по ссылке. То же самое и с указателями — используя их в качестве аргументов таким образом, мы заведомо лишаем их возможности изменения значения.
Вариант третий, или работа над ошибками по второму варианту:

Таким образом, в main’е мы создаем указатель d на указатель a, и именно его передаем в качестве аргумента в функцию замены. Теперь, разыменовав d внутри f4 и приравняв ему значение указателя b, мы заменили значение настоящего указателя a, а не его локальной копии, на значение указателя b.

Кстати, а чего это мы создаем динамические объекты? Ну ладно размер массива не знали, а экземпляры классов мы зачем динамическими делали? Да потому что зачастую, созданный нами объекты свое — они генерились, порождали новые данные/объекты для дальнейшей работы, а теперь пришло им время. умереть [фу, как грубо] уйти со сцены. И как мы это сделаем? Просто:

На данной ноте я хотел бы закончить свое повествование. Если найдется хотя бы пара ребят, которым понравится стиль изложения материала, то я постараюсь продолжить… ой, да кого я обманываю, мне нужен инвайт и все на этом, дайте инвайт и вашим глазам больше не придется видеть это околесицу. Шучу, конечно. Ругайте, комментируйте.

Указатели в языке Си

Тема указателей довольно сложна и мне часто присылают вопросы по ней. В этой статье мы подробно разберем тему указателей.

Рекомендуемая работа с памятью

Перед тем, как разбираться с указателями, сначала посмотрим, как лучше работать с памятью в Си.

Рекомендуемый способ — это прямо описать ту область памяти, которую вы хотите использовать.

В этом примере мы задали целое число, массив и вещественное число. То есть мы явно дали имя элементу данных.

Если мы теперь будем использовать этот элемент данных, то достаточно указать его имя.

Почему рекомендуется делать именно так? Три причины:

Причина 1. Соблюдение принципа изоляции кода

В языке Си данные в функцию передаются по значению. Эти значит, что копия входных параметров размещается на стеке. После выхода из функции эти данные уничтожаются. Поэтому программист уверен, что никакого влияния на остальную программу эти данные не окажут.

Причина 2. Простой вызов в отладчике

Просто добавьте имя элемента данных и вы можете легко наблюдать, что с ним происходит во время отладки.

Причина 3. Самодокументируемый код

Если мы дадим объектам данных осмысленные имена, то код будет хорошо читаться. Например:

Но так как язык Си универсален и есть много способов писать программы, то есть и такой способ как указатели.

Что такое указатели?

Указатель — это переменная, которая содержит адрес некоторого объекта в памяти.

Для работы с указателями используются два оператора:
& — получить адрес переменной (&x — адрес переменной x)

* — получить значение переменной по адресу (*px — значение по адресу px)

Рассмотрим участок памяти. Предположим, что по адресу 54100 размещена символьная переменная char x;

При заведения указателя мы сразу говорим компилятору, что мы завели указатель на объект типа char. Чтобы не было путаницы в именах рекомендуется указатель начинать с символа «p».

Важный момент. Когда комплятор выделяет память под «char x», то выделяется один байт, потому что x — это символ, то есть это однобайтовая переменная. Но когда компилятор выделяет память под «char *px», то выделяется обычно 4 байта, так как адрес (в 32-х битовой системе) занимает 4 байта.

*px — читается как «взять значение по адресу, xранящемуся в px»

Теперь нам нужно записать:

  • в переменную x некоторое значение,
  • a в указатель px — адрес этого значения.

Для этого мы пишем следующие строки:

После этого мы можем работать с этим адресом в памяти как через имя переменной, так и через указатель. Получение значение через указатель называется разыменование указателя.

Но тут нужно быть осторожным. Если в указателе лежит адрес, который не выделен программе, то эта ситуация называется висячий указатель.

Предположим, что px — это висячий указатель. Действия с самим указателем px могут быть любыми, программа не пострадает. Но если мы выполним действие *px над памятью, которая не была выделена программе, то операционная система прекратит действие программы и напишет что-то вроде: «Программа выполнила недопустимую операцию и будет закрыта».

Преимущество указателей

Преимущество указателей в том, что они позволяют передать в функцию значение по ссылке. Слово «ссылка» означает, что мы не передаем значение, а ссылаемся на адрес этого значения. В этом случае можно внутри функции изменять значение элемента данных. Хотя указатель и будет уничтожен после выхода из функции, но мы изменили значение памяти по указателю и это изменение значения сохранится после выход из функции.

Именно поэтому их часто используют.

Недостатки указателей

Главные недостатки указателей:

1. Нарушение принципов изоляции кода

Ошибка в указателе может привести к тому, чтобы будет испорчена память в случайном месте. Хорошо еще, если повезет и программа рухнет, тогда программист сразу заметит ошибку. Но если программа продолжит работу, то найти ошибку будет очень сложно, ведь она не сразу проявляется.

2. Отвлечение внимание на детали реализации

При использовании указателей программисту нужно держать в уме принципы работы с памятью, а это отвлекает от сути задачи, которая решает программист. При правильном подходе к программированию программист должен думать только решаемой задаче, и не отвлекаться на посторонние детали.

3. Плохая читаемость кода

Прямое использование переменной является самоочевидной вещью. Если мы видим x++, то сразу понимаем, что происходит, а вот если мы видим (*px)++ или *px++, то чтобы понять процесс, нужно вдумываться.

Сравним два варианта кода. Код с переменными:

и код с указателями

Мы видим, что с указателями читаемость кода хуже, а преимуществ никаких мы не получили.

Указатели лучше вообще не использовать.

Конечно же, на это последует вопрос: «А как тогда изменять значения внутри функции?»

Этот код поменяет значения любых элементов массива.

Если же речь идет именно о переменных, то правильный ответ такой: если вам нужно изменять внешние значения переменных внутри функции — у вас неверно спроектирована программа.

В правильно спроектированной программе есть три вида элемента данных:

  • Элементы общего назначения — этих данных немного и они должны быть глобальными для всей программы. (например, идентификатор открытой базы данных)
  • Элементы модуля — сюда рекомендуется выносить все данные, которые нужны модулю, чтобы не раздувать передаваемые параметры (например, идентификаторы окон).
  • Временные данные — они должны быть описаны внутри функций и удаляться при выходе.

Для указателей при таком подходе места нет. Но так как указатели широко используются в различных библиотеках, то работать с ними надо уметь.

Ответы на вопросы

Вопрос

Мы сначала передали адрес a в функцию AddFive, затем создали указатель int px(но почему именно в аргументе функции?), далее значение по адресу указателя увеличили на 5. Но тут непонятно, разве так будет работать? То есть, нужно сначала адрес присвоить указателю, как Вы показывали ранее в статье. Получится вот так:

Ответ

В аргументах функции ничего не создается. В аргументах указываются типы, чтобы компилятор мог проверить их при вызове функции. Адрес указателю px не надо присваивать внутри функции, так как этот адрес уже передан в качестве аргумента при вызове функции. То есть во время работы функции указатель px уже указывает на нужный адрес.

Вопрос

Я проверил код в CodeBlocks. Если мы укажем, например, вот так:

то возникнет ошибка: «px undeclared». Т.е. как видите указатель px не объявлен. А чтобы всё работало мы одновременно, c одной стороны, объявляем указатель в аргументе функции AddFive, а с другой стороны, записываем в указатель адрес a. Поэтому, непонятно почему Вы считаете, что ничего там не создаётся. Ведь память под указатель выделилась, так? И как раз, так как мы создали указатель, пусть и в аргументе функции, программа и работает.

Ответ

На этапе компиляции программы при проверке аргументов функции компилятор ничего не создает, а только проверяет соответствие типов аргументов в описании функции и при ее вызове. В данном примере в описании функции нет аргументов, а при вызове передается адрес — это первая ошибка в данном фрагменте. Вторая ошибка заключается в том, что идет обращение к переменной px, но она не объявлена, поэтому компилятор пишет, что «px undeclared», то есть «переменная px не объявлена».

Когда ошибки будут устранены и программа будет запущена, то в момент вызова AddFive(&a) произойдет следующее:

  1. Программа считает адрес переменной a и передаст управление функции AddFive.
  2. Аргументы функции (в данном случае адрес) будут размещены на стеке функции (это временное хранилище данных).
  3. Во время выполнения функции данные будут взяты со стека и обработаны.
  4. После выхода из функции стек будет очищен.

То есть в данном примере память для указателя специально не создается, а используется обычный стек для аргументов функции.

Читать еще:  Чем отличается си от си
Ссылка на основную публикацию
Adblock
detector